【題目】如圖,李老師設(shè)計(jì)了一個(gè)探究杠桿平衡條件的實(shí)驗(yàn):在一個(gè)自制類似天平的儀器的左邊固定托盤A中放置一個(gè)重物,在右邊活動托盤B(可左右移動)中放置一定質(zhì)量的砝碼,使得儀器左右平衡.改變活動托盤B與點(diǎn)O的距離x(cm),觀察活動托盤B中砝碼的質(zhì)量y(g)的變化情況.實(shí)驗(yàn)數(shù)據(jù)記錄如下表:
x(cm) | 10 | 15 | 20 | 25 | 30 |
y(g) | 30 | 20 | 15 | 12 | 10 |
(1)猜測y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(2)當(dāng)砝碼的質(zhì)量為24g時(shí),活動托盤B與點(diǎn)O的距離是多少?
(3)將活動托盤B往左移動時(shí),應(yīng)往活動托盤B中添加還是減少砝碼?
【答案】(1)y=;(2)12.5,(3)應(yīng)添加砝碼.
【解析】
試題分析:(1)觀察可得:x,y的乘積為定值300,故y與x之間的函數(shù)關(guān)系為反比例函數(shù),將數(shù)據(jù)代入用待定系數(shù)法可得反比例函數(shù)的關(guān)系式;
(2)把x=24代入解析式求解,可得答案;
(3)利用函數(shù)增減性即可得出,隨著活動托盤B與O點(diǎn)的距離不斷增大,砝碼的示數(shù)應(yīng)該不斷減小.
解:(1)由圖象猜測y與x之間的函數(shù)關(guān)系為反比例函數(shù),
∴設(shè)y=(k≠0),
把x=10,y=30代入得:k=300,
∴y=,
將其余各點(diǎn)代入驗(yàn)證均適合,
∴y與x的函數(shù)關(guān)系式為:y=;
(2)把y=24代入y=得:x=12.5,
∴當(dāng)砝碼的質(zhì)量為24g時(shí),活動托盤B與點(diǎn)O的距離是12.5cm.
(3)根據(jù)反比例函數(shù)的增減性,即可得出,隨著活動托盤B與O點(diǎn)的距離不斷減小,砝碼的示數(shù)會不斷增大;
∴應(yīng)添加砝碼.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一條長40 cm的繩子,要把它圍成一個(gè)矩形,若設(shè)矩形的一邊長為x cm,回答以下問題:
(1)怎樣圍成一個(gè)面積為75 cm的矩形?
(2)能圍成一個(gè)面積為101 cm的矩形嗎?如能,說明圍法;如不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于氣溫,有的地方用攝氏溫度表示,有的地方用華氏溫度表示,攝氏溫度與華氏溫度之間存在一次函數(shù)關(guān)系.從溫度計(jì)的刻度上可以看出,攝氏溫度x(℃)與華氏溫度y(℉)有如下的對應(yīng)關(guān)系:
x(℃) | … | -10 | 0 | 10 | 20 | 30 | … |
y(℉) | … | 14 | 32 | 50 | 68 | 86 | … |
(1)試確定y與x之間的函數(shù)關(guān)系。
(2)某天,濱海的最高氣溫是25℃,澳大利亞悉尼的最高氣溫80℉,這一天哪個(gè)地區(qū)的最高氣溫較高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤不高于成本價(jià)的80%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤為2000元,那么小明每月的成本需要多少元?(成本=進(jìn)價(jià)×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖,解答下列問題.
(1)圖中的小圓圈被折線隔開分成六層,第一層有1個(gè)小圓圈,第二層有3個(gè)圓圈,第三層有5個(gè)圓圈,……,第六層有11個(gè)圓圈.如果要你繼續(xù)畫下去第n層 有 圓圈
(2)某一層上有65個(gè)圓圈,這是第 層
(3)數(shù)圖中的圓圈個(gè)數(shù)可以有多種不同的方法.
比如:前兩層的圓圈個(gè)數(shù)和為(1+3)或22,
由此得,1+3 = 22.
同樣,
由前三層的圓圈個(gè)數(shù)和得:1+3+5 = 32.
由前四層的圓圈個(gè)數(shù)和得:1+3+5+7 = 42.
由前五層的圓圈個(gè)數(shù)和得:1+3+5+7+9 = 52.
……
根據(jù)上述請你猜測,從1開始的n個(gè)連續(xù)奇數(shù)之和是多少?用公式把它表示出來.
(4)計(jì)算:1+3+5+…+299的和;
(5)計(jì)算:101+103+105+…+299的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)只有一張乒乓球比賽的門票,誰都想去,最后商定通過轉(zhuǎn)盤游戲決定.游戲規(guī)則是:轉(zhuǎn)動下面平均分成三個(gè)扇形且標(biāo)有不同顏色的轉(zhuǎn)盤,轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,若指針前后所指顏色相同,則甲去;否則乙去.(如果指針恰好停在分割線上,那么重轉(zhuǎn)一次,直到指針指向一種顏色為止)
(1)轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,指針?biāo)割伾灿袔追N情況?通過畫樹狀圖或列表法加以說明;
(2)你認(rèn)為這個(gè)游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)附有進(jìn)水管、出水管的水池,每單位時(shí)間內(nèi)進(jìn)出水管的進(jìn)、出水量都是一定的,設(shè)從某時(shí)刻開始,4h內(nèi)只進(jìn)水不出水,在隨后的時(shí)間內(nèi)不進(jìn)水只出水,得到的時(shí)間x(h)與水量y(m3)之間的關(guān)系圖(如圖).回答下列問題:
(1)進(jìn)水管4h共進(jìn)水多少?每小時(shí)進(jìn)水多少?
(2)當(dāng)0≤x≤4時(shí),y與x有何關(guān)系?
(3)當(dāng)x=9時(shí),水池中的水量是多少?
(4)若4h后,只放水不進(jìn)水,那么多少小時(shí)可將水池中的水放完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校初一的學(xué)生要步行到20千米的郊外春游.(1)班學(xué)生組成前隊(duì),步行速度為4千米/時(shí),(2)班學(xué)生組成后隊(duì),速度為6千米/時(shí).前隊(duì)出發(fā)1小時(shí)后,后隊(duì)才出發(fā),同時(shí)后隊(duì)派一名聯(lián)絡(luò)員騎自行車在兩隊(duì)之間不間斷地來回進(jìn)行聯(lián)絡(luò),他騎車的速度為12千米/時(shí).
(1)后隊(duì)追上前隊(duì)需要多長時(shí)間?
(2)后隊(duì)追上前隊(duì)時(shí)間內(nèi),聯(lián)絡(luò)員走的路程是多少?
(3)后隊(duì)出發(fā)幾小時(shí)后兩隊(duì)相距3千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com