【題目】如圖,矩形紙片,,將其折疊使點與點重合,點的對應點為點,折痕為,那么和的長分別為( )
A.4和B.4和C.5和D.5和
【答案】D
【解析】
根據折疊將所求的問題轉化到Rt△ABE中,由勾股定理建立方程可求,在求EF時,根據折疊和全等三角形可證OE=OF,再借助三角形相似,求得OE進而求出EF,得出答案.
解:如圖,設BD與EF相交于點O,
由折疊得:ED=EB,DO=BO,EF⊥BD,
∵矩形ABCD,
∴AD=BC=9,CD=AB=3,∠A=90°,
設DE=x,則BE=x,AE=9x,
在Rt△ABE中,由勾股定理得:AE2+AB2=BE2,
即:(9x)2+32=x2,解得:x=5,即DE=5.
在Rt△ABD中,由勾股定理得:BD=,
∵∠DOE=∠BOF,∠EDO=∠FBO,DO=BO,
∴△DOE≌△BOF(AAS),
∴OE=OF,
∵△DOE∽△DAB,
∴,即,
解得:,
∴EF=2OE=,
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=x,點A1的坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2的長為半徑畫弧交x軸于點A3,…,按此做法進行下去,求點B6的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校八年級開展英語拼寫大賽,一班和二班根據初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績如圖所示:
(1)根據圖示填寫下表
班級 | 中位數(分) | 眾數(分) | 平均數(分) |
一班 | 85 | ||
二班 | 100 | 85 |
(2)結合兩班復賽成績的平均數和中位數,分析哪個班級的復賽成績比較好?
(3)已知一班的復賽成績的方差是70,請求出二班復試成績的方差,并說明哪個班成績比較穩(wěn)定?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PA、PB切⊙O于A.B,點C在AB上,DE切⊙O于C,交PA、PB于D.E,已知PO=5cm,⊙O的半徑為3cm,則△PDE的周長是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線的解析式為,點的坐標分別為(1,0),(0,2),直線與直線相交于點.
(1)求直線的解析式;
(2)點在第一象限的直線上,連接,且,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,一次函數的圖象與軸負半軸交于點,與軸正半軸交于點,點為直線上一點,,點為軸正半軸上一點,連接,的面積為48.
(1)如圖1,求點的坐標;
(2)如圖2,點分別在線段上,連接,點的橫坐標為,點的橫坐標為,求與的函數關系式(不要求寫出自變量的取值范圍);
(3)在(2)的條件下,如圖3,連接,點為軸正半軸上點右側一點,點為第一象限內一點,,,延長交于點,點為上一點,直線經過點和點,過點作,交直線于點,連接,請你判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E、F在邊AD上,AF=DE,連接BF、CE.
(1)求證:∠CBF=∠BCE;
(2)若點G、M、N在線段BF、BC、CE上,且 FG=MN=CN.求證:MG=NF;
(3)在(2)的條件下,當∠MNC=2∠BMG時,四邊形FGMN是什么圖形,證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=的圖象經過點(﹣1,﹣2),點A是該圖象第一象限分支上的動點,連結AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,AC與x軸交于點D,當時,則點C的坐標為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com