【題目】如圖,拋物線y=ax2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,已知A(3,0),且M(1,﹣ )是拋物線上另一點.
(1)求a、b的值;
(2)連結(jié)AC,設(shè)點P是y軸上任一點,若以P、A、C三點為頂點的三角形是等腰三角形,求P點的坐標(biāo);
(3)若點N是x軸正半軸上且在拋物線內(nèi)的一動點(不與O、A重合),過點N作NH∥AC交拋物線的對稱軸于H點.設(shè)ON=t,△ONH的面積為S,求S與t之間的函數(shù)關(guān)系式.
【答案】
(1)
解:把A(3,0),且M(1,﹣ )代入y=ax2+bx﹣2得 ,
解得:
(2)
解:在y=ax2+bx﹣2中,當(dāng)x=0時.y=﹣2,
∴C(0,﹣2),
∴OC=2,
如圖,設(shè)P(0,m),則PC=m+2,OA=3,AC= = ,
①當(dāng)PA=CA時,則OP1=OC=2,
∴P1(0,2);
②當(dāng)PC=CA= 時,即m+2= ,∴m= ﹣2,
∴P2(0, ﹣2);
③當(dāng)PC=PA時,點P在AC的垂直平分線上,
則△AOC∽△P3EC,
∴ = ,
∴P3C= ,
∴m= ,
∴P3(0, ),
④當(dāng)PC=CA= 時,m=﹣2﹣ ,
∴P4(0,﹣2﹣ ),
綜上所述,P點的坐標(biāo)1(0,2)或(0, ﹣2)或(0, )或(0,﹣2﹣ )
(3)
解:過H作HG⊥OA于G,設(shè)HN交Y軸于M,
∵NH∥AC,
∴ ,
∴ ,
∴OM= ,
∵拋物線的對稱軸為直線x= = ,
∴OG= ,
∴GN=t﹣ ,
∵GH∥OC,
∴△NGH∽△NOM,
∴ ,
即 = ,
∴HG= t﹣ ,
∴S= ONGH= t( t﹣ )= t2﹣ t(0<t<3).
【解析】(1)根據(jù)題意列方程組即可得到結(jié)論;(2)在y=ax2+bx﹣2中,當(dāng)x=0時.y=﹣2,得到OC=2,如圖,設(shè)P(0,m),則PC=m+2,OA=3,根據(jù)勾股定理得到AC= = ,①當(dāng)PA=CA時,則OP1=OC=2,②當(dāng)PC=CA= 時,③當(dāng)PC=PA時,點P在AC的垂直平分線上,根據(jù)相似三角形的性質(zhì)得到P3(0, ),④當(dāng)PC=CA= 時,于是得到結(jié)論;(3)過H作HG⊥OA于G,設(shè)HN交Y軸于M,根據(jù)平行線分線段成比例定理得到OM= ,求得拋物線的對稱軸為直線x= = ,得到OG= ,求得GN=t﹣ ,根據(jù)相似三角形的性質(zhì)得到HG= t﹣ ,于是得到結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和平行線分線段成比例的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;三條平行線截兩條直線,所得的對應(yīng)線段成比例.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:45°<∠A<90°,則下列各式成立的是( )
A.sinA=cosA
B.sinA>cosA
C.sinA>tanA
D.sinA<cosA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過點A(1,0),且當(dāng)x=0和x=5時所對應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣ +bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數(shù)y=﹣ +bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉(zhuǎn)180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.
(1)活動中心與小宇家相距千米,小宇在活動中心活動時間為小時,他從活動中心返家時,步行用了小時;
(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);
(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,點P在邊AC上,從點A向點C移動,點Q在邊CB上,從點C向點B移動.若點P,Q均以1cm/s的速度同時出發(fā),且當(dāng)一點移動到終點時,另一點也隨之停止,連接PQ,則線段PQ的最小值是( )
A.20cm
B.18cm
C.2 cm
D.3 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點B,BC為⊙O的弦,OC⊥OA,OA與BC相交于點P.
(1)求證:AP=AB;
(2)若OB=4,AB=3,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點在反比例函數(shù)y= 的圖象上,C,D兩點在反比例函數(shù)y= 的圖象上,AC⊥y軸于點E,BD⊥y軸于點F,AC=2,BD=1,EF=3,則k1﹣k2的值是( )
A.6
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABC1D1的邊長為1,延長C1D1到A1 , 以A1C1為邊向右作正方形A1C1C2D2 , 延長C2D2到A2 , 以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推….若A1C1=2,且點A,D2 , D3 , …,D10都在同一直線上,則正方形A9C9C10D10的邊長是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com