【題目】如圖,分別用火柴棍連續(xù)搭建等邊三角形和正六邊形,公共邊只用一根火柴棍.如果搭建等邊三角形和正六邊形共用了根火柴,并且等邊三角形的個(gè)數(shù)比正六邊形的個(gè)數(shù)多,那么連續(xù)搭建的等邊三角形的個(gè)數(shù)是( )

…………

A.B.C.D.以上答案都不對(duì)

【答案】C

【解析】

設(shè)搭建了x個(gè)正三角形,y個(gè)正六邊形,則搭建正三角形用掉了(2x+1)根火柴棍,搭建正六邊形用掉了(5y+1)根火柴棍,根據(jù)搭建正三角形和正六邊形共用了2018根火柴棍,并且正三角形的個(gè)數(shù)比正六邊形的個(gè)數(shù)多7個(gè),即可得出關(guān)于xy的二元一次方程組,解之即可得出結(jié)論.

解:設(shè)搭建了x個(gè)正三角形,y個(gè)正六邊形,則搭建正三角形用掉了(2x+1)根火柴棍,搭建正六邊形用掉了(5y+1)根火柴棍,

依題意,得:

解得:

故答案為:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)先化簡(jiǎn),然后從-2≤x≤2的范圍內(nèi)選取一個(gè)合適的整數(shù)作為x的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過(guò)的時(shí)間(單位:)之間的關(guān)系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結(jié)論:足球距離地面的最大高度為;足球飛行路線的對(duì)稱軸是直線足球被踢出時(shí)落地;足球被踢出時(shí),距離地面的高度是.

其中正確結(jié)論的個(gè)數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在ABC中,ACBC,點(diǎn)D是線段AB上一動(dòng)點(diǎn),∠EDF繞點(diǎn)D旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中始終保持∠A=∠EDF,射線DE與邊AC交于點(diǎn)M,射線DE與邊BC交于點(diǎn)N,連接MN

1)找出圖中的一對(duì)相似三角形,并證明你的結(jié)論;

2)如圖②,在上述條件下,當(dāng)點(diǎn)D運(yùn)動(dòng)到AB的中點(diǎn)時(shí),求證:在∠EDF繞點(diǎn)D旋轉(zhuǎn)過(guò)程中,點(diǎn)D到線段MN的距離為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“金源”食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:

方案一:從包裝盒加工廠直接購(gòu)買,購(gòu)買所需的費(fèi)用(元)與包裝盒個(gè)數(shù)(個(gè))滿足圖中的射線所示的函數(shù)關(guān)系;

方案二:租賃機(jī)器自己加工,所需費(fèi)用(元)(包括租賃機(jī)器的費(fèi)用和生產(chǎn)包裝盒的費(fèi)用)與包裝盒個(gè)數(shù)(個(gè))滿足圖中射線所示的函數(shù)關(guān)系.

根據(jù)圖象解答下列問(wèn)題:

1)點(diǎn)的坐標(biāo)是_____________,方案一中每個(gè)包裝盒的價(jià)格是___________元,射線所表示的函數(shù)關(guān)系式是_____________.

2)求出方案二中的的函數(shù)關(guān)系式;

3)你認(rèn)為選擇哪種方案更省錢(qián)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABCRtABD中,∠ABC=BAD=90°,AC=BD,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)AAEDBCB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)BBFCADA的延長(zhǎng)線于點(diǎn)F,AE,BF相交于點(diǎn)H.

(1)證明:ABD≌△BAC.

(2)四邊形AHBG是什么樣的四邊形,請(qǐng)猜想并證明.

(3)若使四邊形AHBG是正方形,還需在RtABC添加一個(gè)什么條件?請(qǐng)?zhí)砑訔l件并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形是正方形, 延長(zhǎng)線上一點(diǎn).直角三角尺的一條直角邊經(jīng)過(guò)點(diǎn),且直角頂點(diǎn)邊上滑動(dòng)(點(diǎn)不與點(diǎn)重合),另一直角邊與的平分線相交于點(diǎn)

(1)求證: ;

(2)如圖(1),當(dāng)點(diǎn)邊的中點(diǎn)位置時(shí),猜想的數(shù)量關(guān)系,并證明你的猜想;

(3)如圖(2),當(dāng)點(diǎn)(除兩端點(diǎn))上的任意位置時(shí),猜想此時(shí)有怎樣的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問(wèn)題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上建一個(gè)長(zhǎng)方形花園ABCD,花園一邊靠墻,另三邊用總長(zhǎng)為20m的柵欄圍成.如圖,設(shè)AB=x(m),請(qǐng)問(wèn):當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案