【題目】已知C為線段AB的中點(diǎn),D為線段AC的中點(diǎn).
(1)畫出相應(yīng)的圖形,求出圖中線段的條數(shù)并寫出相應(yīng)的線段;
(2)若圖中所有線段的長度和為26,求線段AC的長度.
【答案】(1)見解析;(2)線段AC的長度為4.
【解析】
試題分析:設(shè)線段AC的長度為x,根據(jù)C為線段AB的中點(diǎn),D為線段AC的中點(diǎn),可用x表示出所有的線段長度,結(jié)合所有線段的長度和為26列出方程,解出方程即可.
解:(1)如圖:
圖中共有6條線段,它們是線段AD、線段AC、線段AB、線段DC、線段DB、線段CB.
(2)設(shè)線段AC的長度為x.
∵點(diǎn)C為線段AB的中點(diǎn),
∴AC=BC=AB,
∴BC=x,AB=2AC=2x.
又∵點(diǎn)D為線段AC的中點(diǎn),
∴AD=DC=AC=x.
∵圖中所有線段的長度和為26,
∴x+x+2x+x+(x+x)+x=26,
即6x=26,
∴x=4.
答:若圖中所有線段的長度和為26,求線段AC的長度為4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF=CE=AE.
(1)說明四邊形ACEF是平行四邊形;
(2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊(duì)準(zhǔn)備鋪設(shè)一條長650米的地下供熱管道,由甲乙兩個工程隊(duì)從兩端相向施工,甲隊(duì)每天鋪設(shè)48米,乙隊(duì)比甲隊(duì)每天多鋪設(shè)22米,如果乙隊(duì)比甲隊(duì)晚開工1天,那么乙隊(duì)開工多少天,兩隊(duì)能完成整個鋪設(shè)任務(wù)的80%?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+6分別交x軸、y軸于A、B兩點(diǎn),拋物線y=﹣x2+8,與y軸交于點(diǎn)D,點(diǎn)P是拋物線在第一象限部分上的一動點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C.
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)D的坐標(biāo)為 ;
(2)探究發(fā)現(xiàn):
①假設(shè)P與點(diǎn)D重合,則PB+PC= ;(直接填寫答案)
②試判斷:對于任意一點(diǎn)P,PB+PC的值是否為定值?并說明理由;
(3)試判斷△PAB的面積是否存在最大值?若存在,求出最大值,并求出此時點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些長30厘米,寬10厘米的長方形紙,按圖所示方法粘合起來,粘合部分的寬為2厘米.
(1)求5張白紙粘合后的總長度為多少厘米?
(2)設(shè)x張白紙粘合后的總長度為y厘米,請寫出y與x之間的關(guān)系式?
(3)求當(dāng)x=20時,試求y的值為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a(chǎn)2a3=a6 B.(a2)3=a5
C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC,BD交于O點(diǎn),且ABCD,那么圖中的全等三角形有( )
A.2對 B.3對 C.4對 D.5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖甲,AB∥CD,試問∠2與∠1+∠3的關(guān)系是什么,為什么?
(2)如圖乙,AB∥CD,試問∠2+∠4與∠1+∠3+∠5一樣大嗎?為什么?
(3)如圖丙,AB∥CD,試問∠2+∠4+∠6與∠1+∠3+∠5+∠7哪個大?為什么?
你能將它們推廣到一般情況嗎?請寫出你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com