分析 (1)連接OD,欲證DE是⊙O的切線,只需證明OD⊥DE即可;
(2)由∠EDA=30°,AE=1,易得AD=2,DE=$\sqrt{3}$,∠ADO=60°,進(jìn)一步得出△ADO為等邊三角形,得出OD=2,然后根據(jù)勾股定理即可求得OE.
解答 (1)證明:連接OD.
∵AD平分∠MAN,
∴∠EAD=∠OAD.
∵OA=OD,
∴∠ODA=∠OAD.
∴∠EAD=∠ODA.
∵DE⊥AM于E,
∴∠AED=90°.
∴∠EAD+∠EDA=90°,
∴∠ODA+∠EDA=90°.
∴OD⊥ED.
∴DE是⊙O的切線.
(2)解:∵∠EDA=30°,
∴∠ODA=60°.
∵OA=OD,
∴△ADO為等邊三角形.
在Rt△AED中,AE=1,可得AD=2,$ED=\sqrt{3}$.
∴OD=AD=2.
在Rt△ODE中,由勾股定理可得$OE=\sqrt{7}$.
點(diǎn)評(píng) 本題考查了切線的判定與性質(zhì)、勾股定理、等邊三角形的判定和性質(zhì)等知識(shí)點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 4-$\sqrt{10}$ | C. | 5-$\sqrt{10}$ | D. | $\sqrt{10}$-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com