【題目】如圖1,在⊙O中,點C為劣弧AB的中點,連接AC并延長至D,使CA=CD,連接DB并延長交⊙O于點E,連接AE.

(1)求證:AE⊙O的直徑;

(2)如圖2,連接CE,⊙O的半徑為5,AC長為4,求陰影部分面積之和.(保留與根號) .

【答案】(1)見解析;(2)

【解析】

(1)連接CB,AB,CE,由點C為劣弧AB上的中點,可得出CB=CA,再根據(jù)CD=CA,得ABD為直角三角形,可得出∠ABE為直角,根據(jù)90度的圓周角所對的弦為直徑,從而證出AE是⊙O的直徑;
(2)由(1)得ACE為直角三角形,根據(jù)勾股定理得出CE的長,陰影部分的面積等于半圓面積減去三角形ACE的面積.

(1)證明:連接CB,AB,CE,


∵點C為劣弧AB上的中點,
CB=CA,
又∵CD=CA,
AC=CD=BC,
∴∠ABC=BAC,DBC=D,
Rt斜邊上的中線等于斜邊的一半,
∴∠ABD=90°,
∴∠ABE=90°,
即弧AE的度數(shù)是180°,
AE是⊙O的直徑;

(2)解:∵AE是⊙O的直徑,
∴∠ACE=90°,
AE=10,AC=4,
∴根據(jù)勾股定理得:CE=2,
S陰影=S半圓-SACE=12.5π-×4×2

=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A1,0)和點B 0,-3),與x軸交于另一點C。

1)求拋物線的解析式。

2)在拋物線上是否存在一點D,使ACD的面積與ABC的面積相等(點D不與點B重合)?若存在,求出點D的坐標;若不存在,請說明理由。

3)若點P是拋物線上的動點,點Q是拋物線對稱軸上的動點,那么是否存在這樣的點P,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形 ABCD 的邊長為 8,E BC 邊的中點,點 P 在射線 AD 上, P PFAE F

1)請判斷△PFA 與△ABE 是否相似,并說明理由;

2)當點 P 在射線 AD 上運動時,設(shè) PAx,是否存在實數(shù) x,使以 P,FE 為頂 點的三角形也與△ABE 相似?若存在,請求出 x 的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx2bxc的圖象過點A1m),B3,m),若點M(-2,y1),N(-1,y2),K8,y3)也在二次函數(shù)yx2bxc的圖象上,將y1y2,y3按從小到大的順序用連接,結(jié)果是___________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.如圖,若點D與圓心O不重合,∠BAC25°,則∠DCA的度數(shù)( 。

A.35°B.40°C.45°D.65°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=(m1x2+2x+m圖象與坐標軸有且只有2個交點,則m_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,弦BE的垂直平分線交⊙O于點CCDABD,AD1,BE6,則BD的長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個同學做了一個數(shù)字游戲:拿出三張正面寫有數(shù)字2,3且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機抽取一張,將所得數(shù)字作為的值,然后將卡片放回并洗勻,乙再從這三張卡片中隨機抽取一張,將所得數(shù)字作為的值,兩次結(jié)果記為.

(1)請你幫他們用畫樹狀圖或列表的方法表示所有可能出現(xiàn)的結(jié)果;

(2)若將記錄結(jié)果看成平面直角坐標系中的一點,求是第一象限內(nèi)的點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的自變量x與函數(shù)值y的對應值如圖,下列說法錯誤的是:( 。

x

6

5

4

3

2

1

y

10

4

0

2

2

0

A.拋物線開口向上

B.拋物線與y軸的交點是(0,4

C.x<﹣2時,yx的增大而減小

D.x>﹣2時,yx的增大而增大

查看答案和解析>>

同步練習冊答案