【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過坐標(biāo)原點(diǎn)O,與拋物線的一個(gè)交點(diǎn)為D,與拋物線的對稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(﹣2,0),(6,﹣8).
(1)求拋物線的函數(shù)表達(dá)式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);
(2)試探究拋物線上是否存在點(diǎn)F,使△FOE≌△FCE?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)P是y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q,試探究:當(dāng)m為何值時(shí),△OPQ是等腰三角形.
【答案】
(1)解:∵拋物線y=ax2+bx﹣8經(jīng)過點(diǎn)A(﹣2,0),D(6,﹣8),
∴ ,解得 ,
∴拋物線解析式為y= x2﹣3x﹣8,
∵y= x2﹣3x﹣8= (x﹣3)2﹣ ,
∴拋物線對稱軸為直線x=3,
又∵拋物線與x軸交于點(diǎn)A、B兩點(diǎn),點(diǎn)A坐標(biāo)(﹣2,0),
∴點(diǎn)B坐標(biāo)(8,0).
設(shè)直線l的解析式為y=kx,
∵經(jīng)過點(diǎn)D(6,﹣8),
∴6k=﹣8,
∴k=﹣ ,
∴直線l的解析式為y=﹣ x,
∵點(diǎn)E為直線l與拋物線的交點(diǎn),
∴點(diǎn)E的橫坐標(biāo)為3,縱坐標(biāo)為﹣ ×3=﹣4,
∴點(diǎn)E坐標(biāo)(3,﹣4)
(2)解:拋物線上存在點(diǎn)F使得△FOE≌△FCE,
此時(shí)點(diǎn)F縱坐標(biāo)為﹣4,
∴ x2﹣3x﹣8=﹣4,
∴x2﹣6x﹣8=0,
x=3 ,
∴點(diǎn)F坐標(biāo)(3+ ,﹣4)或(3﹣ ,﹣4)
(3)解:①如圖1
中,當(dāng)OP=OQ時(shí),△OPQ是等腰三角形.
∵點(diǎn)E坐標(biāo)(3,﹣4),
∴OE= =5,過點(diǎn)E作直線ME∥PB,交y軸于點(diǎn)M,交x軸于點(diǎn)H.則 = ,
∴OM=OE=5,
∴點(diǎn)M坐標(biāo)(0,﹣5).
設(shè)直線ME的解析式為y=k1x﹣5,
∴3k1﹣5=﹣4,
∴k1= ,
∴直線ME解析式為y= x﹣5,
令y=0,得 x﹣5=0,解得x=15,
∴點(diǎn)H坐標(biāo)(15,0),
∵M(jìn)H∥PB,
∴ = ,即 = ,
∴m=﹣ ,
②如圖2
中,當(dāng)QO=QP時(shí),△POQ是等腰三角形.
∵當(dāng)x=0時(shí),y= x2﹣3x﹣8=﹣8,
∴點(diǎn)C坐標(biāo)(0,﹣8),
∴CE= =5,
∴OE=CE,
∴∠1=∠2,
∵QO=QP,
∴∠1=∠3,
∴∠2=∠3,
∴CE∥PB,
設(shè)直線CE交x軸于N,解析式為y=k2x﹣8,
∴3k2﹣8=﹣4,
∴k2= ,
∴直線CE解析式為y= x﹣8,
令y=0,得 x﹣8=0,
∴x=6,
∴點(diǎn)N坐標(biāo)(6,0),
∵CN∥PB,
∴ = ,
∴ = ,
∴m=﹣ .
③OP=PQ時(shí),顯然不可能,理由,
∵D(6,﹣8),
∴∠1<∠BOD,
∵∠OQP=∠BOQ+∠ABP,
∴∠PQO>∠1,
∴OP≠PQ,
綜上所述,當(dāng)m=﹣ 或﹣ 時(shí),△OPQ是等腰三角形
【解析】(1)根據(jù)待定系數(shù)法求出拋物線解析式即可求出點(diǎn)B坐標(biāo),求出直線OD解析式即可解決點(diǎn)E坐標(biāo).(2)拋物線上存在點(diǎn)F使得△FOE≌△FCE,此時(shí)點(diǎn)F縱坐標(biāo)為﹣4,令y=﹣4即可解決問題.(3))①如圖1中,當(dāng)OP=OQ時(shí),△OPQ是等腰三角形,過點(diǎn)E作直線ME∥PB,交y軸于點(diǎn)M,交x軸于點(diǎn)H,求出點(diǎn)M、H的坐標(biāo)即可解決問題.②如圖2中,當(dāng)QO=QP時(shí),△POQ是等腰三角形,先證明CE∥PQ,根據(jù)平行線的性質(zhì)列出方程即可解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,CD是⊙O的兩條互相垂直的直徑,點(diǎn)O1 , O2 , O3 , O4分別是OA、OB、OC、OD的中點(diǎn),若⊙O的半徑為2,則陰影部分的面積為( )
A.8
B.4
C.4π+4
D.4π﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店要進(jìn)行裝修,若請甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付兩組費(fèi)用共3520元;若先請甲組單獨(dú)做6天,再請乙組單獨(dú)做12天可完成,需付兩組費(fèi)用共3480元,問:
(1)甲、乙兩組工作一天,商店應(yīng)各付多少元?
(2)已知甲組單獨(dú)做需12天完成,乙組單獨(dú)做需24天完成,單獨(dú)請哪組,商店所付費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知在數(shù)軸上有A、 B兩點(diǎn),點(diǎn)A表示的數(shù)是-6,點(diǎn)B表示的數(shù)是9.點(diǎn)P在數(shù)軸上從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),點(diǎn)Q在數(shù)軸上從點(diǎn)B出發(fā),以每秒3個(gè)單位的速度沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1) AB=____ ;當(dāng)t=1時(shí),點(diǎn)Q表示的數(shù)是___ ;當(dāng)t=___時(shí),P、Q兩點(diǎn)相遇;
(2)如圖2,若點(diǎn)M為線段AP的中點(diǎn),點(diǎn)N為線段BP中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由.若不變,請求出線段MN的長;
(3)如圖3,若點(diǎn)M為線段的AP中點(diǎn),點(diǎn)T為線段BQ中點(diǎn),則點(diǎn)M表示的數(shù)為______;點(diǎn)T表示的數(shù)為______;MT=______ (用含t的代數(shù)式填空).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點(diǎn) D,E 分別在邊 AC,AB 上,BD 與 CE 交于點(diǎn) O,給出下列三個(gè)條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個(gè)條件中,由哪兩個(gè)條件可以判定△ABC 是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班在一次班會課上,就“遇見路人摔倒后如何處理”的主題進(jìn)行討論,并對全班 50 名學(xué)生的處理方式進(jìn)行統(tǒng)計(jì),得出相關(guān)統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
組別 | A | B | C | D |
處理方式 | 迅速離開 | 馬上救助 | 視情況而定 | 只看熱鬧 |
人數(shù) | m | 30 | n | 5 |
請根據(jù)表圖所提供的信息回答下列問題:
(1)統(tǒng)計(jì)表中的 m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校有 2000 名學(xué)生,請據(jù)此估計(jì)該校學(xué)生采取“馬上救助”方式的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=2,BF=8,BC=AE=6,CE=CF=7,則△CDF與四邊形ABDE的面積比值是( )
A. 1:1 B. 2:1 C. 1:2 D. 2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(﹣1,-2),點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)D,當(dāng)=時(shí),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有以下三個(gè)條件:①AB∥CD,②∠B=∠C,③∠E=∠F.請你以其中兩個(gè)作為題設(shè),另一個(gè)作為結(jié)論構(gòu)造命題.(1)你構(gòu)造的是哪幾個(gè)命題?(2)你構(gòu)造的命題是真命題還是假命題?若是真命題,請給予證明;若是假命題,請舉出反例.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com