【題目】在等腰△ABC中,

1如圖1,若ABC為等邊三角形,D為線段BC中點(diǎn),線段AD關(guān)于直線AB的對(duì)稱線段為線段AE,連接DE,則∠BDE的度數(shù)為___________;

2ABC為等邊三角形,點(diǎn)D為線段BC上一動(dòng)點(diǎn)(不與B,C重合),連接AD并將線段AD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°得到線段DE,連接BE.

①根據(jù)題意在圖2中補(bǔ)全圖形;

②小玉通過觀察、驗(yàn)證,提出猜測(cè):在點(diǎn)D運(yùn)動(dòng)的過程中,恒有CD=BE.經(jīng)過與同學(xué)們的充分討論,形成了幾種證明的思路:

思路1:要證明CD=BE,只需要連接AE,并證明ADC≌△AEB;

思路2:要證明CD=BE,只需要過點(diǎn)DDFAB,交ACF,證明ADF≌△DEB

思路3:要證明CD=BE,只需要延長(zhǎng)CB至點(diǎn)G,使得BG=CD,證明ADC≌△DEG

……

請(qǐng)參考以上思路,幫助小玉證明CD=BE.(只需要用一種方法證明即可)

3小玉的發(fā)現(xiàn)啟發(fā)了小明:如圖3,若AB=AC=kBC,AD=kDE且∠ADE=C,此時(shí)小明發(fā)現(xiàn)BEBD,AC三者之間滿足一定的的數(shù)量關(guān)系,這個(gè)數(shù)量關(guān)系是______________________.(直接給出結(jié)論無(wú)須證明)

【答案】(1)30°;(2)答案見解析;(3)k(BE+BD)=AC

【解析】試題解析:(1)由AD是等邊三角形ABCBC邊上的中線得ADBC,由AEAD關(guān)于AB對(duì)稱,從而AB垂直平分DE,可得ADE60°,所以BDE=30°;

2①根據(jù)題意畫圖即可;

如思路1證明EAB≌△DAC即可得出結(jié)論.

3k(BE+BD)=AC.

試題解析:(1∵ΔABC是等邊三角形,DBC邊的中點(diǎn)

∴∠BAD=30°

線段ADAE關(guān)于直線AB對(duì)稱

DEAB

∴∠ADE=60°

BDE=90°-60°=30°;

2作圖如下:

如圖,連接AE.

3k(BE+BD)=AC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=130°,AB、AC的垂直平分線分別交BC于點(diǎn)E、F則∠EAF等于(
A.60°
B.70°
C.80°
D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D是BC邊的中點(diǎn),E、F分別在AD及其延長(zhǎng)線上,CE∥BF,連結(jié)BE、CF.

(1)圖中的四邊形BFCE是平行四邊形嗎?為什么?
(2)若AB=AC,其它條件不變,那么四邊形BFCE是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中∠C=90°,線段AD是△ABC的角平分線,直線DE是線段AB的垂直平分線.若DE=1cm,DB=2cm,AC= cm.求點(diǎn)C到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題兩直線平行,內(nèi)錯(cuò)角相等的題設(shè)是_________,結(jié)論是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園元旦期間,前往參觀的人非常多.這期間某一天某一時(shí)段,隨機(jī)調(diào)查了部分入園游客,統(tǒng)計(jì)了他們進(jìn)園前等候檢票的時(shí)間,并繪制成如下圖表.表中“10~20”表示等候檢票的時(shí)間大于或等于10min而小于20min,其它類同.

(1)這里采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),樣本容量是;
(2)表中a= , b= , 并請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)在調(diào)查人數(shù)里,若將時(shí)間分段內(nèi)的人數(shù)繪成扇形統(tǒng)計(jì)圖,則“40~50”的圓心角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點(diǎn),且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長(zhǎng)EF交AD的延長(zhǎng)線于G,當(dāng)FG=1時(shí),求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 并寫出△A1B1C1各頂點(diǎn)坐標(biāo);
(2)將△ABC向左平移1個(gè)單位,作出平移后的△A2B2C2 , 并寫出△A2B2C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案