【題目】直線是同一平面內(nèi)的一組平行線.

(1)如圖1.正方形4個頂點都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點,點分別在直線上,求正方形的面積;

(2)如圖2,正方形4個頂點分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為

①求證:

②設正方形的面積為,求證

【答案】195;(2)①見解析,②見解析

【解析】

1)分兩種情況:①如圖1-1,得出正方形ABCD的邊長為3,求出正方形ABCD的面積為9

②如圖1-2,過點BEFl1E,交l4F,則EFl4,證明ABE≌△BCFAAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;

2)①過點BEFl1E,交l4F,作DMl4M,證明ABE≌△BCFAAS),得出AE=BF,同理CDM≌△BCFAAS),得出ABE≌△CDMAAS),得出BE=DM即可;

②由①得出AE=BF=h2+h3=h2+h1,得出正方形ABCD的面積S=AB2=AE2+BE2,即可得到答案.

解:(1)①如圖,當點分別在上時,面積為:;

②如圖,當點分別在上時,過點BEF⊥l1E,交l4F,則EF⊥l4,

∵四邊形ABCD是正方形,

AB=BC,∠ABC=90°,

∴∠ABE+CBF=180°-90°=90°,

∵∠CBF+BCF=90°,

∴∠ABE=BCF

在△ABE和△BCF

,

∴△ABE≌△BCFAAS),

∴AE=BF=2,

∴AB=,

正方形ABCD的面積=AB2=5

綜上所述,正方形ABCD的面積為95;

2證明:過點BEF⊥l1E,交l4F,作DM⊥l4M,如圖所示:則EFl4

四邊形ABCD是正方形,

∴AB=BC,∠ABC=90°

∴∠ABE+∠CBF=180°-90°=90°,

∵∠CBF+∠BCF=90°,

∴∠ABE=∠BCF,

△ABE△BCF中,

,
∴△ABE≌△BCFAAS),

∴AE=BF,

同理△CDM≌△BCFAAS),

∴△ABE≌△CDMAAS),

∴BE=DM

h1=h3

解:由得:AE=BF=h2+h3=h2+h1,

正方形ABCD的面積:S=AB2=AE2+BE2,

S=h2+h12+h12=2h12+2h1h2+h22

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ACBE內(nèi)接于O,AB平分CAE,CDAB交AB、AE分別于點H、D.

(1)如圖,求證:BD=BE;

(2)如圖,若F是弧AC的中點,連接BF,交CD于點M,CMF=2CBF,連接FO、OC,求FOC的度數(shù);

(3)在(2)的條件下,連接OD,若BC=4 ,OD=7,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xoy中,點Mx軸的正半軸上,Mx軸于A、B兩點,交y軸于C、D兩點,且C為AE的中點,AEy軸于G點,若點A的坐標為(-1,0),AE=4

(1)求點C的坐標;

(2)連接MG、BC,求證:MGBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點MN同時停止運動,問點MN運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AC=2AB,將矩形ABCD繞點A旋轉(zhuǎn)得到矩形AB′C′D′,使點B的對應點B'落在AC上,B'C'AD于點E,在B'C′上取點F,使B'F=AB.

(1)求證:AE=C′E.

(2)求∠FBB'的度數(shù).

(3)已知AB=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,則下列結(jié)論中不正確的是(  )

A. c<0

B. y的最小值為負值

C. x>1時,yx的增大而減小

D. x=3是關于x的方程ax2+bx+c=0的一個根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可疑船只,測得A、B兩處距離為99海里,可疑船只正沿南偏東53°方向航行.我漁政船迅速沿北偏東27°方向前去攔截,2小時后剛好在C處將可疑船只攔截.求該可疑船只航行的速度.

(參考數(shù)據(jù):sin27°≈, cos27°≈, tan27°≈, sin53°≈, cos53°≈, tan53°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠大門是一拋物線水泥建筑物(如圖),大門地面寬AB=4 m,頂部C離地面高為4.4 m.

(1)以AB所在直線為x軸,拋物線的對稱軸為y軸,建立平面直角坐標系,求該拋物線對應的函數(shù)表達式;

(2)現(xiàn)有一輛載滿貨物的汽車欲通過大門,貨物頂點距地面2.8 m,裝貨寬度為2.4 m,請通過計算,判斷這輛汽車能否順利通過大門.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動物學家通過大量的調(diào)查估計出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動物活到25歲的概率為多少?現(xiàn)年25歲的這種動物活到30歲的概率為多少?

查看答案和解析>>

同步練習冊答案