【題目】直線是同一平面內(nèi)的一組平行線.
(1)如圖1.正方形的4個頂點都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點,點分別在直線和上,求正方形的面積;
(2)如圖2,正方形的4個頂點分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為.
①求證:;
②設正方形的面積為,求證.
【答案】(1)9或5;(2)①見解析,②見解析
【解析】
(1)分兩種情況:①如圖1-1,得出正方形ABCD的邊長為3,求出正方形ABCD的面積為9;
②如圖1-2,過點B作EF⊥l1于E,交l4于F,則EF⊥l4,證明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;
(2)①過點B作EF⊥l1于E,交l4于F,作DM⊥l4于M,證明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;
②由①得出AE=BF=h2+h3=h2+h1,得出正方形ABCD的面積S=AB2=AE2+BE2,即可得到答案.
解:(1)①如圖,當點分別在上時,面積為:;
②如圖,當點分別在上時,過點B作EF⊥l1于E,交l4于F,則EF⊥l4,
∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∵∠CBF+∠BCF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中
,
∴△ABE≌△BCF(AAS),
∴AE=BF=2,
∴AB=,
∴正方形ABCD的面積=AB2=5;
綜上所述,正方形ABCD的面積為9或5;
(2)①證明:過點B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如圖所示:則EF⊥l4,
∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∵∠CBF+∠BCF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴AE=BF,
同理△CDM≌△BCF(AAS),
∴△ABE≌△CDM(AAS),
∴BE=DM,
即h1=h3.
②解:由①得:AE=BF=h2+h3=h2+h1,
∵正方形ABCD的面積:S=AB2=AE2+BE2,
∴S=(h2+h1)2+h12=2h12+2h1h2+h22.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ACBE內(nèi)接于⊙O,AB平分∠CAE,CD⊥AB交AB、AE分別于點H、D.
(1)如圖①,求證:BD=BE;
(2)如圖②,若F是弧AC的中點,連接BF,交CD于點M,∠CMF=2∠CBF,連接FO、OC,求∠FOC的度數(shù);
(3)在(2)的條件下,連接OD,若BC=4 ,OD=7,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系xoy中,點M在x軸的正半軸上,⊙M交x軸于A、B兩點,交y軸于C、D兩點,且C為弧AE的中點,AE交y軸于G點,若點A的坐標為(-1,0),AE=4
(1)求點C的坐標;
(2)連接MG、BC,求證:MG∥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AC=2AB,將矩形ABCD繞點A旋轉(zhuǎn)得到矩形AB′C′D′,使點B的對應點B'落在AC上,B'C'交AD于點E,在B'C′上取點F,使B'F=AB.
(1)求證:AE=C′E.
(2)求∠FBB'的度數(shù).
(3)已知AB=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中不正確的是( )
A. c<0
B. y的最小值為負值
C. 當x>1時,y隨x的增大而減小
D. x=3是關于x的方程ax2+bx+c=0的一個根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可疑船只,測得A、B兩處距離為99海里,可疑船只正沿南偏東53°方向航行.我漁政船迅速沿北偏東27°方向前去攔截,2小時后剛好在C處將可疑船只攔截.求該可疑船只航行的速度.
(參考數(shù)據(jù):sin27°≈, cos27°≈, tan27°≈, sin53°≈, cos53°≈, tan53°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠大門是一拋物線水泥建筑物(如圖),大門地面寬AB=4 m,頂部C離地面高為4.4 m.
(1)以AB所在直線為x軸,拋物線的對稱軸為y軸,建立平面直角坐標系,求該拋物線對應的函數(shù)表達式;
(2)現(xiàn)有一輛載滿貨物的汽車欲通過大門,貨物頂點距地面2.8 m,裝貨寬度為2.4 m,請通過計算,判斷這輛汽車能否順利通過大門.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】動物學家通過大量的調(diào)查估計出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動物活到25歲的概率為多少?現(xiàn)年25歲的這種動物活到30歲的概率為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com