【題目】點(diǎn)A,B的坐標(biāo)分別為(-2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的頂點(diǎn)在線段AB上運(yùn)動(dòng)時(shí),形狀保持不變,且與x軸交于C,D兩點(diǎn)(C在D的左側(cè)),給出下列結(jié)論:①c<3;②當(dāng)x<-3時(shí),y隨x的增大而增大;③若點(diǎn)D的橫坐標(biāo)最大值為5,則點(diǎn)C的橫坐標(biāo)最小值為-5;④當(dāng)四邊形ACDB為平行四邊形時(shí),a= .其中正確的是( )
A.②④
B.②③
C.①③④
D.①②④

【答案】A
【解析】解:∵點(diǎn)A,B的坐標(biāo)分別為(-2,3)和(1,3),
∴線段AB與y軸的交點(diǎn)坐標(biāo)為(0,3),
又∵拋物線的頂點(diǎn)在線段AB上運(yùn)動(dòng),拋物線與y軸的交點(diǎn)坐標(biāo)為(0,c),
∴c≤3,(頂點(diǎn)在y軸上時(shí)取“=”),故①錯(cuò)誤;
∵拋物線的頂點(diǎn)在線段AB上運(yùn)動(dòng),
∴當(dāng)x<-2時(shí),y隨x的增大而增大,
因此,當(dāng)x<-3時(shí),y隨x的增大而增大,故②正確;
若點(diǎn)D的橫坐標(biāo)最大值為5,則此時(shí)對稱軸為直線x=1,
根據(jù)二次函數(shù)的對稱性,點(diǎn)C的橫坐標(biāo)最小值為-2-4=-6,故③錯(cuò)誤;
令y=0,則ax2+bx+c=0,
CD2=(- 2-4× = ,
根據(jù)頂點(diǎn)坐標(biāo)公式, ,
,
∴CD2= ×(-12)= ,
∵四邊形ACDB為平行四邊形,
∴CD=AB=1-(-2)=3,
=32=9,
解得a= ,故④正確;
綜上所述,正確的結(jié)論有②④.
故選:A.

【考點(diǎn)精析】利用二次函數(shù)的性質(zhì)和平行四邊形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列網(wǎng)格中建立平面直角坐標(biāo)系如圖,每個(gè)小正方形的邊長均為1個(gè)單位長度.已知A(1,1)、B(3,4)和C(4,2).

(1)在圖中標(biāo)出點(diǎn)A、B、C.

(2)將點(diǎn)C向下平移3個(gè)單位到D點(diǎn),將點(diǎn)A先向左平移3個(gè)單位,再向下平移1個(gè)單位到E點(diǎn),在圖中標(biāo)出D點(diǎn)和E點(diǎn).

(3)求△EBD的面積S△EBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6月5日是“世界環(huán)境日”,某校從3名男生和2名女生中隨機(jī)抽取學(xué)生去參加市中學(xué)生環(huán)保演講比賽.
(1)若抽取1名學(xué)生參加,恰好是男生的概率是;
(2)如果抽取1名學(xué)生參加,請用列表或樹狀圖求出恰好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明有5張寫著不同的數(shù)字的卡片,請你按要求抽出卡片,完成下列各問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是   

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是   ;

(3)從中取出4張卡片,用學(xué)過的運(yùn)算方法,使結(jié)果為24.寫出運(yùn)算式子:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面我們做一次折疊活動(dòng)

第一步,在一張寬為2的矩形紙片的一端利用圖(1)的方法折出一個(gè)正方形,然后把紙片展平折痕為MC;

第二步如圖(2),把這個(gè)正方形折成兩個(gè)相等的矩形再把紙片展平,折痕為FA

第三步,折出內(nèi)側(cè)矩形FACB的對角線AB并將AB折到圖(3)中所示的AD,折痕為AQ

根據(jù)以上的操作過程,完成下列問題

1)求CD的長

2)請判斷四邊形ABQD的形狀并說明你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB4,BC5,點(diǎn)E在邊CD上,以B為坐標(biāo)原點(diǎn),BA所在直線為y軸,BC所在直線為x軸,建立平面直角坐標(biāo)系,A(0,4).以AE所在直線為折痕折疊長方形ABCD,點(diǎn)D恰好落在BC邊上的F點(diǎn).

(1)求點(diǎn)F的坐標(biāo);

(2)求點(diǎn)E的坐標(biāo);

(3)AE上是否存在點(diǎn)P,使PBPF最?若存在,作出點(diǎn)P的位置,并求出PBPF的最小值;不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(-6)-(-9); (2)1.8-(-2.6);

(3); (4)8-(9-10);

(5)(-61)-(-71)-(-8)-(-2); (6)-3.7-(-)-1.3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請根據(jù)圖示的對話解答下列問題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀圖1的情景對話,然后解答問題:
(1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是命題(填“真”或“假”)
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖2,AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓 的中點(diǎn),C、D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AE=AD,CB=CE. ①求證:△ACE是奇異三角形;
②當(dāng)△ACE是直角三角形時(shí),求∠AOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案