【題目】某商場(chǎng)將進(jìn)貨價(jià)為30元的臺(tái)燈以40元的價(jià)格售出,平均每月能售出600個(gè),經(jīng)調(diào)查表明,這種臺(tái)燈的售價(jià)每上漲1元,其銷量就減少10個(gè),市場(chǎng)規(guī)定此臺(tái)燈售價(jià)不得超過60元.
(1)為了實(shí)現(xiàn)銷售這種臺(tái)燈平均每月10000元的銷售利潤(rùn),售價(jià)應(yīng)定為多少元?
(2)若商場(chǎng)要獲得最大利潤(rùn),則應(yīng)上漲多少元?
【答案】(1)50元;(2)漲20元.
【解析】
(1)設(shè)這種臺(tái)燈上漲了x元,臺(tái)燈將少售出10x,那么利潤(rùn)為(40+x-30)(600-10x)=10000,解方程即可;
(2)根據(jù)銷售利潤(rùn)=每個(gè)臺(tái)燈的利潤(rùn)×銷售量,每個(gè)臺(tái)燈的利潤(rùn)=售價(jià)-進(jìn)價(jià),列出二次函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)即可求最大利潤(rùn).
解:(1)設(shè)這種臺(tái)燈上漲了元,依題意得:
,
化簡(jiǎn)得:,
解得:(不合題意,舍去)或,
售價(jià):(元)
答:這種臺(tái)燈的售價(jià)應(yīng)定為50元.
(2)設(shè)臺(tái)燈上漲了元,利潤(rùn)為元,依題意:
∴
對(duì)稱軸,在對(duì)稱軸的左側(cè)隨著的增大而增大,
∵單價(jià)在60元以內(nèi),
∴
∴當(dāng)時(shí),元,
答:商場(chǎng)要獲得最大利潤(rùn),則應(yīng)上漲20元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點(diǎn)C,OA、OB分別交⊙O于點(diǎn)D、E、弧CD=弧CE
(1)求證:∠A=∠B.
(2)已知AC=2,OA=4,求陰影部分的面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于的一元二次方程()有兩個(gè)不相等的實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,那么稱這樣的方程為“倍根方程”,例如,方程的兩個(gè)根是2和4,則方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,則______;
(2)若()是“倍根方程”,求代數(shù)式的值;
(3)若方程()是倍根方程,且相異兩點(diǎn),,都在拋物線上,求一元二次方程()的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為點(diǎn),點(diǎn)的坐標(biāo)為(0,-1),該拋物線與交于另一點(diǎn),連接.
(1)求該拋物線的解析式,并用配方法把解析式化為的形式;
(2)若點(diǎn)在上,連接,求的面積;
(3)一動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿平行于軸方向向上運(yùn)動(dòng),連接,,設(shè)運(yùn)動(dòng)時(shí)間為秒(>0),在點(diǎn)的運(yùn)動(dòng)過程中,當(dāng)為何值時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x+4的圖象與反比例函數(shù)y2=的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求k.
(2)根據(jù)圖象直接寫出y1>y2時(shí),x的取值范圍.
(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點(diǎn),求k的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱軸為直線x=1,則下列結(jié)論①abc>0②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3③4a+2b+c<0④當(dāng)x>0時(shí),y隨x的增大而減小正確的是( 。
A.①③④B.②④C.①②③D.②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤(rùn)為40元(市場(chǎng)管理部門規(guī)定,該種玩具每件利潤(rùn)不能超過60元),每天可售出50件.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.設(shè)銷售單價(jià)增加元,每天售出件.
(1)請(qǐng)寫出與之間的函數(shù)表達(dá)式;
(2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤(rùn)2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC,點(diǎn)D為BC上一點(diǎn),連接AD.
圖1 圖2
(1)若點(diǎn)E是AC上一點(diǎn),且CE=BD,連接BE,BE與AD的交點(diǎn)為點(diǎn)P,在圖(1)中根據(jù)題意補(bǔ)全圖形,直接寫出∠APE的大小;
(2)將AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°,得到AF,連接BF交AC于點(diǎn)Q,在圖(2)中根據(jù)題意補(bǔ)全圖形,用等式表示線段AQ和CD的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com