【題目】如圖,∠MON =ACB = 90°,AC = BC,AB =5ABC頂點A、C分別在ONOM上,點DAB邊上的中點,當點A在邊ON上運動時,點C隨之在邊OM上運動,則OD的最大值為_____

【答案】.

【解析】

如圖,取AC的中點E,連接OE、DE、OD,由ODOE+DE,可得當OD、E三點共線時,點D到點O的距離最大,再根據(jù)已知條件,結合三角形的中位線定理及直角三角形斜邊中線的性質即可求得OD的最大值.

如圖,取AC的中點E,連接OEDE、OD

ODOE+DE,

∴當OD、E三點共線時,點D到點O的距離最大,

∵∠ACB = 90°,AC = BC,AB =5,

AC=BC=

∵點EAC的中點,點DAB的中點,

DE為△ABC的中位線,

DE=BC=;

RtABC中,點EAC的中點,

∴OE=AC=;

OD的最大值為:OD+OE=

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB=4,將紙片折疊,折痕的一個端點F在邊AD上,另一個端點G在邊BC上,若頂點B的對應點E落在長方形內(nèi)部,EAD的距離為1,BG=5,則AF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣45),(﹣1,3).

1)寫出點B的坐標,B  ;

2)將△ABC平移得△A′B′C′,點AB、C的對應點分別是點A′、B′、C′,已知A′23),寫出點B′C′的坐標:B′  C′ 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人分別騎自行車和摩托車沿相同路線由A地到相距80千米的B地,行駛過程中的函數(shù)圖象如圖所示,請根據(jù)圖象回答下列問題:

(1)甲先出發(fā)______小時后,乙才出發(fā);大約在甲出發(fā)______小時后,兩人相遇,這時他們離A_______千米.

(2)兩人的行駛速度分別是多少?

(3)分別寫出表示甲、乙的路程y(千米)與時間x(小時)之間的函數(shù)表達式(不要求寫出自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,ADC=60°,AB=BC=1,則下列結論:

①∠CAD=30°BD=S平行四邊形ABCD=ABACOE=ADSAPO=,正確的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是直線y3上的動點,連接PO并將POP點旋轉90°PO′,當點O′剛好落在雙曲線x0)上時,點P的橫坐標所有可能值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班級準備購買一些獎品獎勵春季運動會表現(xiàn)突出的同學,獎品分為甲、乙兩種,已知,購買一個甲獎品比一個乙獎品多用20元,若用400元購買甲獎品的個數(shù)是用160元購買乙獎品個數(shù)的一半.

1)求購買一個甲獎品和一個乙獎品各需多少元?

2)經(jīng)商談,商店決定給予該班級每購買甲獎品3個就贈送一個乙獎品的優(yōu)惠,如果該班級需要乙獎品的個數(shù)是甲獎品的2倍還多8個,且該班級購買兩種獎項的總費用不超過640元,那么該班級最多可購買多少個甲獎品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數(shù)互為相反數(shù).

1)填空:a   ,b   ,c   ;

2)先化簡,再求值:5a2b[2a2b32abca2b]+4abc

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,試判斷、、之間的關系.并說明理由.

2)如圖,,.試判斷的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案