如圖,在□ABCD中,AE⊥BC于E,AE=EB=EC=,且是一元二次方程的根,則□ABCD的周長為( )
A.B.
C.D.
A

試題分析:根據(jù)平行四邊形的性質(zhì)結(jié)合AE⊥BC可得AE=EB=EC=a,即可得到△AEB是等腰直角三角形,由勾股定理可求得AB、BC的長,解一元二次方程即可求得a的值,從而求得結(jié)果.
∵平行四邊形ABCD
∴AD∥BC,
∵AE⊥BC于E,
∵AE=EB=EC=a,
∴△AEB是等腰直角三角形,由勾股定理得:AB2=AE2+BE2,即AB=a,BC=BE+CE=2a,
∴平行四邊形ABCD的周長=2(AB+BC)=2a(2+),
∵a是一元二次方程的根,解此方程得x=-3或x=1,顯然x=-3,不合題意,x=1,
∴x=a=1,
∴平行四邊形ABCD的周長=2(AB+BC)=2a(2+)=2(2+)=4+2
故選A.
點(diǎn)評:本題要求我們能根據(jù)所給的條件與圖形,觀察出△BAE的特殊性,綜合運(yùn)用平行四邊形的性質(zhì),勾股定理求得平行四邊形的周長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在四邊形中,4,13,12,∠
90°,∠135°, 四邊形的面積是  (   )
A.94B.90C.84D.78

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一組對邊平行,并且對角線互相垂直且相等的四邊形可能是(      )
A.菱形或矩形B.正方形或等腰梯形
C.矩形或等腰梯形D.菱形或直角梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知邊長為4的正方形ABCD中,E為CD中點(diǎn),P為BE中點(diǎn),F(xiàn)為AP中點(diǎn),F(xiàn)H⊥AB交AB于H連接PH則下列結(jié)論正確的有                              (   )

①BE=AE   ② ③HP//AE  ④HF=1 ⑤
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,正方形ABCD中,點(diǎn)E是BA延長線上一點(diǎn),連接DE,點(diǎn)F在DE上且DF=DC,DG⊥CF于G. DH平分∠ADE交CF于點(diǎn)H,連接BH.

(1)若DG=2,求DH的長;
(2)求證:BH+DH=CH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,點(diǎn)E,D,F(xiàn)分別在邊AB、BC、CA上,且DE∥CA,DF∥BA.下列四個(gè)判斷中,不正確的是(  )

A.四邊形AEDF是平行四邊形;
B.如果∠BAC=90°,那么四邊形AEDF是矩形;
C.如果AD平分∠BAC,那么四邊形AEDF是菱形;
D.如果AD⊥BC且AB=AC,那么四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明將一張正方形包裝紙,剪成圖1所示形狀,用它包在一個(gè)棱長為10dm的正方體的表面(不考慮接縫),如圖2所示,小明所用正方形包裝紙的邊長至少為    dm;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把一個(gè)長方形紙片沿EF折疊后,點(diǎn)D、C分別落在D′、C′的位置,若∠EFB=65°,
則∠AED′等于
A.50°B.55°C.60°  D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,如果以正方形ABCD的對角線AC為邊作第二個(gè)正方形ACEF,再以對角線AE為邊作第三個(gè)正方形AEGH,如此下去,…,已知正方形ABCD的面積為1,按上述方法所作的正方形的面積依次為,…..,n為正整數(shù)),那么第8個(gè)正方形的面積=___________.

查看答案和解析>>

同步練習(xí)冊答案