【題目】已知二次函數(shù)y=ax2(a≠0)與一次函數(shù)y=kx﹣2的圖象相交于A、B兩點,如圖所示,其中A(﹣1,﹣1),
(1)求二次函數(shù)和一次函數(shù)解析式.
(2)求△OAB的面積.
【答案】(1)一次函數(shù)表達式為y=﹣x﹣2,二次函數(shù)表達式為y=﹣x2,(2)3
【解析】
(1)利用點A的坐標可求出直線與拋物線的解析式;
(2)求出點G的坐標及點B的坐標,利用S△OAB=OG|A的橫坐標|+OG點B的橫坐標求解即可.
解:(1)∵一次函數(shù)y=kx﹣2的圖象相過點A(﹣1,﹣1),
∴﹣1=﹣k﹣2,解得k=﹣1,
∴一次函數(shù)表達式為y=﹣x﹣2,
∵y=ax2過點A(﹣1,﹣1),
∴﹣1=a×1,解得a=﹣1,
∴二次函數(shù)表達式為y=﹣x2,
(2)在y=﹣x﹣2中,令x=0,得y=﹣2,
∴G(0,﹣2),
由一次函數(shù)與二次函數(shù)聯(lián)立可得,
解得或
∴點B的坐標為(2,-4)
∴S△OAB=OG|A的橫坐標|+OG點B的橫坐標=×2×1+×2×2=1+2=3.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1,作正方形A1B1C1C;延長C1B1交x軸于點A2,作正方形A2B2C2C1…按這樣的規(guī)律進行下去,第2012個正方形的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm.點E,F,G分別從A,B,C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s.當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關于直線EF的對稱圖形是△EB'F,設點E,F,G運動的時間為t(單位:s).
(1)當t= s時,四邊形EBFB'為正方形;
(2)若以點E,B,F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B'與點O重合?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖菱形ABCD的邊AB與x軸重合,點C、D分別在y=和y=的圖象上,若菱形ABCD的兩條對角線長分別是3和4,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以AB為直徑的半⊙O上有點C,點D在上,過圓心作OF⊥CD的于點F,OF、AD的延長線交于點E,連結CE,若∠DEC=90°.
(1)試說明∠BAC=45°;
(2)若DF=1,△ACE的面積為△DCE面積的3倍,連接AC交OE于點P,求tan∠ACD的值和OP的長;
(3)在(2)的條件下,延長EC與AB的延長線相交于點G,直接寫出BG的長 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象分別位于第二、第四象限,A(x1,y1)、B(x2,y2)兩點在該圖象上,下列命題:①過點A作AC⊥x軸,C為垂足,連接OA.若△ACO的面積為3,則k=﹣6;②若x1<0<x2,則y1>y2;③若x1+x2=0,則y1+y2=0,其中真命題個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△OAB中,∠OAB=90°,OA=AB,將△OAB物點O逆時針方向旋轉90°得到△OA1B1.
(1)求∠AOB1的度數(shù);
(2)連結AA1,求證:四邊形OAA1B1是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是用鋼絲制作的一個幾何探究工具,其中△ABC內接于⊙G,AB是⊙G的直徑,AB=6,AC=2,現(xiàn)將制作的幾何探究工具放在平面直角坐標系中(如圖2),然后點A在射線OX上由點O開始向右滑動,點B在射線OY上也隨之向點O滑動(如圖3),當點B滑動至與點O重合時運動結束,在整個運動過程中,點C運動的路徑長是( )
A.πB.2πC.4-2D.10-4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com