【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.
(1)說明四邊形ACEF是平行四邊形;
(2)當(dāng)∠B滿足什么條件時(shí),四邊形ACEF是菱形,并說明理由.
【答案】(1)說明見解析;(2)當(dāng)∠B=30°時(shí),四邊形ACEF是菱形.理由見解析.
【解析】
試題(1)證明△AEC≌△EAF,即可得到EF=CA,根據(jù)兩組對(duì)邊分別相等的四邊形是平行四邊形即可判斷;
(2)當(dāng)∠B=30°時(shí),四邊形ACEF是菱形.根據(jù)直角三角形的性質(zhì),即可證得AC=EC,根據(jù)菱形的定義即可判斷.
(1)證明:由題意知∠FDC=∠DCA=90°,
∴EF∥CA,
∴∠FEA=∠CAE,
∵AF=CE=AE,
∴∠F=∠FEA=∠CAE=∠ECA.
在△AEC和△EAF中,
∵
∴△EAF≌△AEC(AAS),
∴EF=CA,
∴四邊形ACEF是平行四邊形.
(2)解:當(dāng)∠B=30°時(shí),四邊形ACEF是菱形.
理由如下:∵∠B=30°,∠ACB=90°,
∴AC=AB,
∵DE垂直平分BC,
∴∠BDE=90°
∴∠BDE=∠ACB
∴ED∥AC
又∵BD=DC
∴DE是△ABC的中位線,
∴E是AB的中點(diǎn),
∴BE=CE=AE,
又∵AE=CE,
∴AE=CE=AB,
又∵AC=AB,
∴AC=CE,
∴四邊形ACEF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點(diǎn),分別在菱形的邊,上,頂點(diǎn)、在菱形的對(duì)角線上.
(1)求證:;
(2)若為中點(diǎn),,求菱形的周長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn),的坐標(biāo)分別為,,將平行四邊形繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到平行四邊形,當(dāng)點(diǎn)落在的延長(zhǎng)線上時(shí),線段交于點(diǎn),則線段的長(zhǎng)度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩個(gè)紙箱,每個(gè)紙箱內(nèi)各裝有4個(gè)材質(zhì)、大小都相同的乒乓球,其中一個(gè)紙箱內(nèi)4個(gè)小球上分別寫有1、2、3、4這4個(gè)數(shù),另一個(gè)紙箱內(nèi)4個(gè)小球上分別寫有5、6、7、8這4個(gè)數(shù),甲、乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)紙箱中各隨機(jī)摸出一個(gè)小球,然后把兩個(gè)小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進(jìn)行下一次游戲,最后得分高者勝出.。
(1)請(qǐng)你通過列表(或樹狀圖)分別計(jì)算乘積是2的倍數(shù)和3的倍數(shù)的概率;
(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?若你認(rèn)為不公平,請(qǐng)你修改得分規(guī)則,使游戲?qū)﹄p方公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條高BD、CE相交于點(diǎn)O 且OB=OC.則下列結(jié)論:
①△BEC≌△CDB;
②△ABC是等腰三角形;
③AE=AD;
④點(diǎn)O在∠BAC的平分線上,
其中正確的有_____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與直線.
(1)求兩直線交點(diǎn)的坐標(biāo);
(2)求的面積.
(3)在直線上能否找到點(diǎn),使得,若能,請(qǐng)求出點(diǎn)的坐標(biāo),若不能請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快“智慧校園”建設(shè),某市準(zhǔn)備為試點(diǎn)學(xué)校采購(gòu)一批兩種型號(hào)的一體機(jī),經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),每套型一體機(jī)的價(jià)格比每套型一體機(jī)的價(jià)格多萬(wàn)元,且用萬(wàn)元恰好能購(gòu)買套型一體機(jī)和套型一體機(jī).
(1)列二元一次方程組解決問題:求每套型和型一體機(jī)的價(jià)格各是多少萬(wàn)元?
(2)由于需要,決定再次采購(gòu)型和型一體機(jī)共套,此時(shí)每套型體機(jī)的價(jià)格比原來上漲,每套型一體機(jī)的價(jià)格不變.設(shè)再次采購(gòu)型一體機(jī)套,那么該市至少還需要投入多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)南水北調(diào)中線工程的起點(diǎn)是丹江水庫(kù),按照工程計(jì)劃,需對(duì)原水庫(kù)大壩進(jìn)行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位.如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡CD的坡度為:1.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,,,∠,點(diǎn)是的中點(diǎn),點(diǎn)在的邊上,若為等腰三角形,則的長(zhǎng)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com