【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA與x軸重合,B的坐標為(﹣1,2),將矩形OABC繞平面內一點P順時針旋轉90°,使A、C兩點恰好落在反比例函數 的圖象上,則旋轉中心P點的坐標是( 。
A. (,﹣) B. (,﹣) C. (,﹣) D. (,﹣)
【答案】C
【解析】
設A'(a,),則C'(a+2,-1),依據反比例函數圖象上點的坐標特征,即可得到a=2,進而得出A'(2,2),C'(4,1),設P(x,y),再根據AP=A'P,CP=C'P,即可得到方程組,進而得出旋轉中心P點的坐標.
解:如圖,
∵B的坐標為(-1,2),
∴矩形的長為2,寬為1,
由旋轉可得,A'O'⊥x軸,O'C'⊥y軸,
設A'(a,),則C'(a+2,-1),
∵點C'在反比例函數y=的圖象上,
∴(a+2)(-1)=4,
解得a=2(負值已舍去),
∴A'(2,2),C'(4,1),
由旋轉的性質可得,AP=A'P,CP=C'P,
設P(x,y),則
,
解得,
∴旋轉中心P點的坐標是(,-),
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,BD⊥AC于點D,CE⊥AB于點E,CE和BD交于點O,AO的延長線交BC于點F,則圖中全等的三角形有( )
A.8對B.7對C.6對D.5對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為( )
A. 4 B. ﹣4 C. ﹣6 D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與x軸,y軸的交點為A,B兩點,點A,B的縱坐標、橫坐標如圖所示.
(1)求直線AB的表達式及△AOB的面積S△AOB.
(2)在x軸上是否存在一點,使S△PAB=3?若存在,求出P點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,與是兩個全等的等邊三角形,.有下列四個結論:①;②;③直線垂直平分線段;④四邊形是軸對稱圖形.其中正確的結論有_____.(把正確結論的序號填在橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,菱形ABCD的邊AB在x軸上,已知點A(2,0),點C(10,4),雙曲線經過點D.
(1)求菱形ABCD的邊長;
(2)求雙曲線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數與軸、軸分別交于點、兩點,與正比例函數交于點.
(1)求一次函數和正比例函數的表達式;
(2)若點為直線上的一個動點(點不與點重合),點在一次函數的圖象上,軸,當時,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△OAB中,OA=OB,⊙O經過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD.
(1)試判斷AB與⊙O的位置關系,并加以證明;
(2)若tanE=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com