【題目】如圖,已知AB是⊙O的弦,半徑OA=2cm,∠AOB=120°
(1)求tan∠OAB的值;
(2)求圖中陰影部分的面積S;
(3)在⊙O上一點(diǎn)P從A點(diǎn)出發(fā),沿逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周,回到點(diǎn)A,在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,滿足S△POA=S△AOB時(shí),直接寫出P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)(不考慮點(diǎn)P與點(diǎn)B重合的情形).
【答案】(1);(2)(π﹣)cm2;(3)P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)為 πcm或πcm或πcm.
【解析】試題分析:(1)、根據(jù)等腰三角形的性質(zhì)求出∠OAB的角度,從而根據(jù)特殊角的三角函數(shù)值求出它的值;(2)、陰影部分的面積等于扇形AOB的面積減去△OAB的面積;(3)、本題需要分∠AOP=60°、∠AOP=120°和點(diǎn)P在弧AB上三種情況來(lái)分別進(jìn)行計(jì)算,得出答案.
試題解析:(1)、解:∵OA=OB, ∴∠OAB=∠OBA,
∵∠OAB= (180°﹣120°)=30°, ∴tan∠OAB=tan30°=;
(2)、解:作OC⊥AB于C,如圖,則AC=BC,
在Rt△OAC中,OC=OA=1,AC=OC=, ∴AB=2AC=2,
∴S弓形AB=S扇形AOB﹣S△AOB=﹣2 1=(π﹣)cm2;
(3)、解:延長(zhǎng)BO交⊙O于P, ∵OP=OB, ∴此時(shí)S△AOP=S△AOB,
∵∠AOP=∠OAB+∠OBA=60°, ∴此時(shí)P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)=π(cm);
當(dāng)點(diǎn)P在弧AB上,且∠AOP=60°時(shí),時(shí)S△AOP=S△AOB ,
此時(shí)P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)=2π2﹣π=π(cm);
當(dāng)∠AOP=120時(shí),S△AOP=S△AO, ∴此時(shí)P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)=π(cm);
綜上所述,P點(diǎn)所經(jīng)過(guò)的弧長(zhǎng)為πcm或πcm或πcm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“龜兔賽跑”的故事同學(xué)們非常熟悉,圖中的線段OD和折線OABC表示“龜兔賽跑”時(shí)路程與時(shí)間的關(guān)系,請(qǐng)你根據(jù)圖中給出的信息,解決下列的問(wèn)題:
(1)折線OABC表示賽跑過(guò)程中__________(填“兔子”或“烏龜”)的路程與時(shí)間的關(guān)系,賽跑的全程是_________米;
(2)烏龜用了多少分鐘追上正在睡覺(jué)的兔子?
(3)兔子醒來(lái),以400米/分的速度跑向終點(diǎn),結(jié)果還是比烏龜晚到了0.5分鐘,請(qǐng)你計(jì)算兔子中間睡覺(jué)用了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的、兩種型號(hào)的電器,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
種型號(hào) | 種型號(hào) | ||
第一周 | 3臺(tái) | 4臺(tái) | 1200元 |
第二周 | 5臺(tái) | 6臺(tái) | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入—進(jìn)貨成本)
(1)求、兩種型號(hào)的電器的銷售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電器共50臺(tái),求種型號(hào)的電器最多能采購(gòu)多少臺(tái)?
(3)在(2)中商場(chǎng)用不多于7500元采購(gòu)這兩種型號(hào)的電器共50臺(tái)的條件下,商場(chǎng)銷售完這50臺(tái)電器能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列內(nèi)容,并答題:我們知道,計(jì)算n邊形的對(duì)角線條數(shù)公式為: n(n﹣3).
如果一個(gè)n邊形共有20條對(duì)角線,那么可以得到方程n(n﹣3)=20 .
整理得n2﹣3n﹣40=0;解得n=8或n=﹣5
∵n為大于等于3的整數(shù),∴n=﹣5不合題意,舍去.
∴n=8,即多邊形是八邊形.
根據(jù)以上內(nèi)容,問(wèn):
(1)若一個(gè)多邊形共有14條對(duì)角線,求這個(gè)多邊形的邊數(shù);
(2)A同學(xué)說(shuō):“我求得一個(gè)多邊形共有10條對(duì)角線”,你認(rèn)為A同學(xué)說(shuō)法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,點(diǎn)A(1,8),B(1,6),C(7,6).
(1)請(qǐng)直接寫出點(diǎn)D的坐標(biāo);
(2)連接線段OB,OD,BD,請(qǐng)求出△OBD的面積;
(3)若長(zhǎng)方形ABCD以每秒1個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,是否存在某一時(shí)刻,使△OBD的面積與長(zhǎng)方形ABCD的面積相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個(gè)圖象交于y軸上一點(diǎn)C,直線l2與x軸的交點(diǎn)B(2,0)
(1)求a、b的值;
(2)過(guò)動(dòng)點(diǎn)Q(n,0)且垂直于x軸的直線與l1、l2分別交于點(diǎn)M、N都位于x軸上方時(shí),求n的取值范圍;
(3)動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個(gè)單位長(zhǎng)的速度向左移動(dòng),設(shè)移動(dòng)時(shí)間為t秒,當(dāng)△PAC為等腰三角形時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則下列結(jié)論正確的有( )
①∠DFE=∠AEF;②∠EMF=90°;③EG∥FM;④∠AEF=∠EGC.
A. 1個(gè)B. 2個(gè)
C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明用12元買軟面筆記本,小麗用21元買硬面筆記本.
(1)已知每本硬面筆記本比軟面筆記本貴1.2元,小明和小麗能買到相同數(shù)量的筆記本嗎?
(2)已知每本硬面筆記本比軟面筆記本貴a元,是否存在正整數(shù)a,使得每本硬面筆記本、軟面筆記本的價(jià)格都是正整數(shù),并且小明和小麗能買到相同數(shù)量的筆記本?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).如圖,四邊形ABCD都是平行四邊形,AD∥BC,AB∥CD,設(shè)它的面積為S.
(1)如圖①,點(diǎn)M為AD上任意一點(diǎn),若△BCM的面積為S1,則S1:S= ;
(2)如圖②,點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn)時(shí),記△PAB的面積為Sˊ,△PCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得Sˊ、S〞的和與S的數(shù)量關(guān)系式為 ;
(3)如圖③,已知點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn),△PAB的面積為3,△PBC的面積為7,求△PBD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com