【題目】為了提高學生書寫漢字的能力,增強保護漢字的意識,我市舉辦了首屆“漢字聽寫大賽”,經選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:
組別 | 成績x分 | 頻數(人數) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(4)第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小宇與小強兩名男同學能分在同一組的概率.
科目:初中數學 來源: 題型:
【題目】如圖,某數學興趣小組要測量一棟五層居民樓CD的高度,該樓底層為車庫,高2.5米;上面五層居住,每層高度相等,測角儀支架離地1.5米,在A處測得五樓頂部點D的仰角為60°,在B處測得四樓頂部點E的仰角為30°,AB=14米,求居民樓的高度.(精確到0.1米,參考數據:≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,等邊三角形ABC的邊長為5,點P在線段AB上,點D在線段BC上,且△PDE是等邊三角形.
(1)初步嘗試:若點P與點A重合時(如圖1),BD+BE= .
(2)類比探究:將點P沿AB方向移動,使AP=1,其余條件不變(如圖2),試計算BD+BE的值是多少?
(3)拓展遷移:如圖3,在△ABC中,AB=AC,∠BAC=70°,點P在線段AB的延長線上,點D在線段CB的延長線上,在△PDE中,PD=PE,∠DPE=70°,設BP=a,請直接寫出線段BD、BE之間的數量關系(用含a的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“一帶一路”的戰(zhàn)略構想為國內許多企業(yè)的發(fā)展帶來了新的機遇,某公司生產A,B兩種機械設備,每臺B種設備的成本是A種設備的倍,公司若投入16萬元生產A種設備,36萬元生產B種設備,則可生產兩種設備共10臺.請解答下列問題:
(1)A,B兩種設備每臺的成本分別是多少萬元?
(2)A,B兩種設備每臺的售價分別是6萬元,10萬元,該公司生產兩種設備各30臺,為更好的支持“一帶一路”的戰(zhàn)略構想,公司決定優(yōu)惠賣給“一帶一路”沿線的甲國,A種設備按原來售價8折出售,B種設備在原來售價的基礎上優(yōu)惠10%,若設備全部售出,該公司一共獲利多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了10m到達D處,此時遇到一斜坡,坡度i=1:,沿著斜坡前進10米到達E處測得建筑物頂部的仰角是45°,請求出該建筑物BC的高度為( 。ńY果可帶根號)
A. 5+5 B. 5+5 C. 5+10 D. 5+10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點B的坐標是(0,2),動點A從原點O出發(fā),沿著x軸正方向移動,△ABP是以AB為斜邊的等腰直角三角形(點A、B、P順時針方向排列),當點A與原點O重合時,得到等腰直角△OBC(此時點P與點C重合).
(1)BC=______;當OA=2時,點P的坐標是______;
(2)設動點A的坐標為(t,0)(t≥0).
①求證:點A在移動過程中,△ABP的頂點P一定在射線OC上;
②用含t的代數式表示點P的坐標為:(______,______);
(3)過點P做y軸的垂線PQ,Q為垂足,當t=______時,△PQB與△PCB全等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是( 。
A. (2017,0) B. (2017, ) C. (2018, ) D. (2018,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC為等邊三角形,E為射線BA上一點,D為直線BC上一點,ED.=EC.
(1)當點E在AB的上,點D在CB的延長線上時(如圖1),求證:AE+AC=CD;
(2)當點E在BA的延長線上,點D在BC上時(如圖2),請寫出AE,AC和CD之間的數量關系,不需要證明;
(3)當點E在BA的延長線上,點D在BC的延長線上時(如圖3),請寫出AE、AC和CD的數量關系,不需要證明;
(4)在(1)和(2)的條件下,若AE=2,CD=6,則AC= 。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市舉行主題為“奔跑吧!2018”的市民健康跑活動.紅樹林學校的小記者隨機采訪了40名參賽選手,了解到他們平時每周跑步公里數(單位:km),并根據統(tǒng)計結果繪制出以下頻數分布直方圖和不完整的表格.
每周跑步公里數/km | 頻數(人數) | 頻率 |
0≤x<10 | 2 | 5% |
10≤x<20 | a | m |
20≤x<30 | b | 40% |
30≤x<40 | 10 | 25% |
40≤x<50 | 4 | n |
(1)求a= ,n= ;
(2)本次活動有10000人參加比賽,請根據上述調查結果,估算該活動中每周跑步公里數在10≤x<30 內的人數;
(3)應比賽組委會要求,現從每周跑步公里數在40≤x<50 內的4名參賽選手甲,乙,丙,丁中隨機抽取2人作為本次活動的形象宣傳員,請用畫樹狀圖法或列表法求出恰好抽中乙,丙兩人的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com