【題目】如圖,菱形ABCD中,DE⊥AB,垂足為點(diǎn)E,連接CE.若AE=2,∠DCE=30°,則菱形的邊長(zhǎng)為________.
【答案】
【解析】
由四邊形ABCD為菱形性質(zhì)得DC∥AB,則同旁內(nèi)角互補(bǔ),得∠CDE+∠DEB=180°,
結(jié)合DE⊥AB,則DE⊥DC,已知∠DCE=30°,設(shè)DE=x, 用勾股定理把DC、AD、和DE用含x的代數(shù)式表示,在Rt△AED中,利用勾股列關(guān)系式求得x=, 則.
解:∵四邊形ABCD為菱形,
∴DC∥AB,
∴∠CDE+∠DEB=180°,
∵DE⊥AB,
∴DE⊥DC,
∵∠DCE=30°,
設(shè)DE=x, 則EC=2x,
,
∴AD=DC=,
在Rt△AED中,有AD2=DE2+AE2 ,
解得x=,
,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來越高.孝感市槐蔭公司根據(jù)市場(chǎng)需求代理、兩種型號(hào)的凈水器,每臺(tái)型凈水器比每臺(tái)型凈水器進(jìn)價(jià)多200元,用5萬元購(gòu)進(jìn)型凈水器與用4.5萬元購(gòu)進(jìn)型凈水器的數(shù)量相等.
(1)求每臺(tái)型、型凈水器的進(jìn)價(jià)各是多少元;
(2)槐蔭公司計(jì)劃購(gòu)進(jìn)、兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷,其中型凈水器為臺(tái),購(gòu)買資金不超過9.8萬元.試銷時(shí)型凈水器每臺(tái)售價(jià)2500元,型凈水器每臺(tái)售價(jià)2180元.槐蔭公司決定從銷售型凈水器的利潤(rùn)中按每臺(tái)捐獻(xiàn)元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的利潤(rùn)為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.
已知是比例三角形,,,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng);
如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC,BD相交于點(diǎn)O,AC平分∠DCB,CD⊥AD,∠ACD=45°,∠BAC=60°.
(1)證明:AD∥BC;
(2)求∠EAD的度數(shù);
(3)求證:∠AOB=∠DAC +∠CBD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)你閱讀下列解題過程,并回答所提出的問題.
計(jì)算:
解:原式= 、
= ②
=x-3-3(x+1) ③
=-2x-6 ④
(1)上述計(jì)算過程中,從哪一步開始出現(xiàn)錯(cuò)誤______;
(2)從②到③是否正確?__________,若不正確,錯(cuò)誤的原因是______________;
(3)請(qǐng)你給出正確答案__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1、圖2是兩張大小完全相同的6×6方格紙,每個(gè)小方格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形叫做格點(diǎn)多邊形.網(wǎng)格中有一個(gè)邊長(zhǎng)為2的格點(diǎn)正方形,按下列要求畫出拼圖后的格點(diǎn)平行四邊形(用陰影表示)
(1)把圖1中的格點(diǎn)正方形分割成兩部分,再通過圖形變換拼成一個(gè)平行四邊形,在圖1中畫出這個(gè)格點(diǎn)平行四邊形;
(2)把圖2中的格點(diǎn)正方形分割成三部分,再通過圖形變換拼成一個(gè)平行四邊形,在圖2中畫出這個(gè)格點(diǎn)平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,已知AC=BC=2, AB=4,作∠ACB的外角平分線CF,點(diǎn)E從點(diǎn)B沿著射線BA以每秒2個(gè)單位的速度運(yùn)動(dòng),過點(diǎn)E作BC的平行線交CF于點(diǎn)F.
(1)求證:四邊形BCFE是平行四邊形;
(2)當(dāng)點(diǎn)E是邊AB的中點(diǎn)時(shí),連接AF,試判斷四邊形AECF的形狀,并說明理由;
(3)設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在t的值,使得以△EFC的其中兩邊為鄰邊所構(gòu)造的平行四邊形恰好是菱形?不存在的,試說明理由;存在的,請(qǐng)直接寫出t的值.答:t=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)(x<0)與y=ax+b的圖象交于點(diǎn)A(﹣1,n)和點(diǎn)B(﹣2,1).
(1)求k,a,b的值;
(2)直線x=m與(x<0)的圖象交于點(diǎn)P,與y=﹣x+1的圖象交于點(diǎn)Q,當(dāng)∠PAQ>90°時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A,B在x軸上,且關(guān)于y軸對(duì)稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點(diǎn)E,F(xiàn),若S△BEF=7,k1+3k2=0,則k1等于_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com