【題目】如圖,菱形ABCD中,DEAB,垂足為點(diǎn)E,連接CE.若AE2,∠DCE30°,則菱形的邊長(zhǎng)為________

【答案】

【解析】

由四邊形ABCD為菱形性質(zhì)得DCAB,則同旁內(nèi)角互補(bǔ),得∠CDE+DEB=180°,

結(jié)合DEAB,則DEDC,已知∠DCE=30°,設(shè)DE=x, 用勾股定理把DC、AD、和DE用含x的代數(shù)式表示,在RtAED中,利用勾股列關(guān)系式求得x=, .

解:∵四邊形ABCD為菱形,

DCAB

∴∠CDE+DEB=180°,

DEAB,

DEDC

∵∠DCE=30°,

設(shè)DE=x, EC=2x,

AD=DC=,

RtAED中,有AD2=DE2+AE2 ,

解得x=

,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來越高.孝感市槐蔭公司根據(jù)市場(chǎng)需求代理、兩種型號(hào)的凈水器,每臺(tái)型凈水器比每臺(tái)型凈水器進(jìn)價(jià)多200元,用5萬元購(gòu)進(jìn)型凈水器與用4.5萬元購(gòu)進(jìn)型凈水器的數(shù)量相等.

(1)求每臺(tái)型、型凈水器的進(jìn)價(jià)各是多少元;

(2)槐蔭公司計(jì)劃購(gòu)進(jìn)、兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷,其中型凈水器為臺(tái),購(gòu)買資金不超過9.8萬元.試銷時(shí)型凈水器每臺(tái)售價(jià)2500元,型凈水器每臺(tái)售價(jià)2180元.槐蔭公司決定從銷售型凈水器的利潤(rùn)中按每臺(tái)捐獻(xiàn)元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的利潤(rùn)為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.

已知是比例三角形,,,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng);

如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.

如圖2,在的條件下,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBD相交于點(diǎn)O,AC平分∠DCB,CDAD,∠ACD45°,∠BAC60°.

(1)證明:ADBC;

(2)求∠EAD的度數(shù);

(3)求證:∠AOB=∠DAC +∠CBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)你閱讀下列解題過程,并回答所提出的問題.

計(jì)算:

解:原式=     、

x33(x1) ③

=-2x6

(1)上述計(jì)算過程中,從哪一步開始出現(xiàn)錯(cuò)誤______;

(2)從②到③是否正確?__________,若不正確,錯(cuò)誤的原因是______________;

(3)請(qǐng)你給出正確答案__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1、圖2是兩張大小完全相同的6×6方格紙,每個(gè)小方格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形叫做格點(diǎn)多邊形.網(wǎng)格中有一個(gè)邊長(zhǎng)為2的格點(diǎn)正方形,按下列要求畫出拼圖后的格點(diǎn)平行四邊形(用陰影表示)

1)把圖1中的格點(diǎn)正方形分割成兩部分,再通過圖形變換拼成一個(gè)平行四邊形,在圖1中畫出這個(gè)格點(diǎn)平行四邊形;

2)把圖2中的格點(diǎn)正方形分割成三部分,再通過圖形變換拼成一個(gè)平行四邊形,在圖2中畫出這個(gè)格點(diǎn)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC中,已知ACBC2, AB4,作∠ACB的外角平分線CF,點(diǎn)E從點(diǎn)B沿著射線BA以每秒2個(gè)單位的速度運(yùn)動(dòng),過點(diǎn)EBC的平行線交CF于點(diǎn)F

1)求證:四邊形BCFE是平行四邊形;

2)當(dāng)點(diǎn)E是邊AB的中點(diǎn)時(shí),連接AF,試判斷四邊形AECF的形狀,并說明理由;

3)設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在t的值,使得以EFC的其中兩邊為鄰邊所構(gòu)造的平行四邊形恰好是菱形?不存在的,試說明理由;存在的,請(qǐng)直接寫出t的值.答:t________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)x0)與y=ax+b的圖象交于點(diǎn)A(﹣1,n)和點(diǎn)B(﹣2,1).

(1)求k,a,b的值;

(2)直線x=m與x0)的圖象交于點(diǎn)P,與y=﹣x+1的圖象交于點(diǎn)Q,當(dāng)PAQ90°時(shí),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A,Bx軸上,且關(guān)于y軸對(duì)稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點(diǎn)E,F(xiàn),若SBEF=7,k1+3k2=0,則k1等于_____

查看答案和解析>>

同步練習(xí)冊(cè)答案