【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫(xiě)出PM與PN的數(shù)量關(guān)系,并加以證明.
【答案】
(1)
解:PM=PN,PM⊥PN,理由如下:
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),
∴PM= BD,PN= AE,
∴PM=PM,
∵PM∥BD,PN∥AE,AE⊥BD,
∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN
(2)
解:∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,
∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∴△ACE≌△BCD.
∴AE=BD,∠CAE=∠CBD.
又∵∠AOC=∠BOE,
∠CAE=∠CBD,
∴∠BHO=∠ACO=90°.
∵點(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),
∴PM= BD,PM∥BD;
PN= AE,PN∥AE.
∴PM=PN.
∴∠MGE+∠BHA=180°.
∴∠MGE=90°.
∴∠MPN=90°.
∴PM⊥PN
(3)
解:PM=kPN
∵△ACB和△ECD是直角三角形,
∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∵BC=kAC,CD=kCE,
∴ =k.
∴△BCD∽△ACE.
∴BD=kAE.
∵點(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),
∴PM= BD,PN= AE.
∴PM=kPN.
【解析】(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)PM=kPN,由已知條件可證明△BCD∽△ACE,所以可得BD=kAE,因?yàn)辄c(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),所以PM= BD,PN= AE,進(jìn)而可證明PM=kPN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+b與雙曲線y= (k為常數(shù),k≠0)在第一象限內(nèi)交于點(diǎn)A(1,2),且與x軸、y軸分別交于B,C兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)點(diǎn)P在x軸上,且△BCP的面積等于2,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的實(shí)數(shù));④(a+c)2<b2;⑤a>1.其中正確的項(xiàng)是( )
A.①⑤
B.①②⑤
C.②⑤
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至OA′B′C′的位置,若OB= ,∠C=120°,則點(diǎn)B′的坐標(biāo)為( )
A.(3, )
B.(3, )
C.( , )
D.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=3,點(diǎn)E為射線BC上一動(dòng)點(diǎn),將△ABE沿AE折疊,得到△AB′E.若B′恰好落在射線CD上,則BE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法: ①36的平方根是6; ②±9的平方根是±3; ③ =±4; ④0.01是0.1的平方根; ⑤42的平方根是4; ⑥81的算術(shù)平方根是±9.
其中正確的說(shuō)法是( )
A.0
B.1
C.3
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某項(xiàng)針對(duì)18~35歲的青年人每天發(fā)微博數(shù)量的調(diào)查中,設(shè)一個(gè)人的“日均發(fā)微博條數(shù)”為m,規(guī)定:當(dāng)m≥10時(shí)為A級(jí),當(dāng)5≤m<10時(shí)為B級(jí),當(dāng)0≤m<5時(shí)為C級(jí).現(xiàn)隨機(jī)抽取30個(gè)符合年齡條件的青年人開(kāi)展每人“日均發(fā)微博條數(shù)”的調(diào)查,所抽青年人的“日均發(fā)微博條數(shù)”的數(shù)據(jù)如下表:
11 | 10 | 6 | 15 | 9 | 16 | 13 | 12 | 0 | 8 |
2 | 8 | 10 | 17 | 6 | 13 | 7 | 5 | 7 | 3 |
12 | 10 | 7 | 11 | 3 | 6 | 8 | 14 | 15 | 12 |
(1)求樣本數(shù)據(jù)中為A級(jí)的頻率;
(2)試估計(jì)1000個(gè)18~35歲的青年人中“日均發(fā)微博條數(shù)”為A級(jí)的人數(shù);
(3)從樣本數(shù)據(jù)為C級(jí)的人中隨機(jī)抽取2人,用列舉法求抽得2個(gè)人的“日均發(fā)微博條數(shù)”都是3的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是某副食品公司銷(xiāo)售糖果的總利潤(rùn)y(元)與銷(xiāo)售量x(千克)之間的函數(shù)圖象(總利潤(rùn)=總銷(xiāo)售額﹣總成本),該公司想通過(guò)“不改變總成本,提高糖果售價(jià)”的方案解決銷(xiāo)售不佳的現(xiàn)狀,下面給出的四個(gè)圖象,虛線均表示新的銷(xiāo)售方案中總利潤(rùn)與銷(xiāo)售量之間的函數(shù)圖象,則能反映該公司改進(jìn)方案的是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com