【題目】如圖,是某副食品公司銷售糖果的總利潤y(元)與銷售量x(千克)之間的函數(shù)圖象(總利潤=總銷售額﹣總成本),該公司想通過“不改變總成本,提高糖果售價”的方案解決銷售不佳的現(xiàn)狀,下面給出的四個圖象,虛線均表示新的銷售方案中總利潤與銷售量之間的函數(shù)圖象,則能反映該公司改進(jìn)方案的是(
A.
B.
C.
D.

【答案】C
【解析】解:A、根據(jù)函數(shù)圖象可知,斜率不變,與y軸交點(diǎn)上移, 即售價不變,總成本減少;
B、根據(jù)函數(shù)圖象可知,斜率不變,與y軸交點(diǎn)下移,
即售價不變,總成本增加;
C、根據(jù)函數(shù)圖象可知,斜率變大,與y軸交點(diǎn)不變,
即總成本不變,售價增加;
D、根據(jù)函數(shù)圖象可知,斜率變小,與y軸交點(diǎn)不變,
即總成本不變,售價減少.
故選C
【考點(diǎn)精析】本題主要考查了函數(shù)的圖象的相關(guān)知識點(diǎn),需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)!绑w育課外活動興趣小組”,開設(shè)了以下體育課外活動項(xiàng)目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有人,在扇形統(tǒng)計(jì)圖中“D”對應(yīng)的圓心角的度數(shù)為;
(2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在平時的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于 MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④SDAC:SABC=1:3.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(棵),它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實(shí)6750千克?
(3)當(dāng)增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD交于點(diǎn)O,E為AB中點(diǎn),點(diǎn)F在CB的延長線上,且EF∥BD.
(1)求證;四邊形OBFE是平行四邊形;
(2)當(dāng)線段AD和BD之間滿足什么條件時,四邊形OBFE是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m與y= (m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,OA=5.OA與⊙O相交于點(diǎn)P,AB與⊙O相切于點(diǎn)B,BP的延長線交直線l于點(diǎn)C.

(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說明理由;
(2)若PC=2 ,求⊙O的半徑和線段PB的長;
(3)若在⊙O上存在點(diǎn)Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由大小兩種貨車,3輛大車與4輛小車一次可以運(yùn)貨22噸,2輛大車與6輛小車一次可以運(yùn)貨23噸.請根據(jù)以上信息,提出一個能用方程(組)解決的問題,并寫出這個問題的解答過程.

查看答案和解析>>

同步練習(xí)冊答案