【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過C作CG∥AE交BA的延長(zhǎng)線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)連結(jié)OC,由C是劣弧AE的中點(diǎn),根據(jù)垂徑定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)連結(jié)AC、BC,根據(jù)圓周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,則∠CDB=90°,根據(jù)等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;
解:(1)證明:連結(jié)OC,如圖,
∵C是劣弧AE的中點(diǎn),∴OC⊥AE,
∵CG∥AE,∴CG⊥OC,
∴CG是⊙O的切線;
(2)證明:連結(jié)AC、BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,∴∠B+∠BCD=90°,
∴∠B=∠2,
∵AC弧=CE弧,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;(也可由OA=OC直接證)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AC為直徑的⊙O與BC交于點(diǎn)D,DE⊥AB,垂足為E,ED的延長(zhǎng)線與AC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為4,∠F=30°,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)D從點(diǎn)A出發(fā)以1cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止.作DE⊥AC交邊AB或BC于點(diǎn)E,以DE為邊向右作正方形DEFG.設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t(s).
(1)求AC的長(zhǎng).
(2)請(qǐng)用含t的代數(shù)式表示線段DE的長(zhǎng).
(3)當(dāng)點(diǎn)F在邊BC上時(shí),求t的值.
(4)設(shè)正方形DEFG與△ABC重疊部分圖形的面積為S(cm2),當(dāng)重疊部分圖形為四邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形MNOK和正六邊形ABCDEF邊長(zhǎng)均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn)……連續(xù)經(jīng)過六次旋轉(zhuǎn).在旋轉(zhuǎn)的過程中,當(dāng)正方形和正六邊形的邊重合時(shí),點(diǎn)B,M間的距離可能是( 。
A. 0.5B. 0.7C. ﹣1D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】程大位是我國(guó)明朝商人,珠算發(fā)明家.他60歲時(shí)完成的《直指算法統(tǒng)宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:
一百饅頭一百僧,大僧三個(gè)更無(wú)爭(zhēng),
小僧三人分一個(gè),大小和尚得幾丁.
意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完,大、小和尚各有多少人,下列求解結(jié)果正確的是( )
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校九年級(jí)學(xué)生的理化實(shí)驗(yàn)操作情況,隨機(jī)抽查了40名同學(xué)實(shí)驗(yàn)操作的得分.根據(jù)獲取的樣本數(shù)據(jù),制作了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)扇形 ①的圓心角的大小是 ;
(Ⅱ)求這40個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);
(Ⅲ)若該校九年級(jí)共有320名學(xué)生,估計(jì)該校理化實(shí)驗(yàn)操作得滿分(10分)有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的邊軸,垂足為點(diǎn),頂點(diǎn)在第二象限,頂點(diǎn)在軸的正半軸上,反比例函數(shù)的圖象同時(shí)經(jīng)過頂點(diǎn)、,若點(diǎn)的橫坐標(biāo)為5,,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 先化簡(jiǎn),再求值:
(1)[x2+y2﹣(x+y)2+2x(x﹣y)]÷4x,其中x﹣2y=2
(2)(mn+2)(mn﹣2)﹣(mn﹣1)2,其中m=2,n=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具商店銷售功能相同的A、B兩種品牌的計(jì)算器,購(gòu)買2個(gè)A品牌和3個(gè)B品牌的計(jì)算器共需156元;購(gòu)買3個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122元.
(1)求這兩種品牌計(jì)算器的單價(jià);
(2)學(xué)校開學(xué)前夕,該商店對(duì)這兩種計(jì)算器開展了促銷活動(dòng),具體辦法如下:A品牌計(jì)算器按原價(jià)的八折銷售,B品牌計(jì)算器超出5個(gè)的部分按原價(jià)的七折銷售,設(shè)購(gòu)買x個(gè)A品牌的計(jì)算器需要y1元,購(gòu)買x(x>5)個(gè)B品牌的計(jì)算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)需要購(gòu)買50個(gè)計(jì)算器時(shí),買哪種品牌的計(jì)算器更合算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com