【題目】在平面上,七個(gè)邊長(zhǎng)為1的等邊三角形,分別用①至⑦表示(如圖).從④⑤⑥⑦組成的圖形中,取出一個(gè)三角形,使剩下的圖形經(jīng)過一次平移,與①②③組成的圖形拼成一個(gè)正六邊形
(1)你取出的是哪個(gè)三角形?寫出平移的方向和平移的距離;
(2)將取出的三角形任意放置在拼成的正六邊形所在平面,問:正六邊形沒有被三角形蓋住的面積能否等于 ?請(qǐng)說明理由.

【答案】
(1)解:取出⑦,向上平移1個(gè)單位;

答:取出的是三角形⑦,平移的方向向上平移,平移的距離是1個(gè)單位


(2)解:可以做到.

理由是:∵每個(gè)等邊三角形的面積是 ,

∴正六邊形的面積為

而0<S6 ,

∴0< <S1,

∴只需用⑦的 面積覆蓋住正六邊形就能做到


【解析】(1)取出⑦,觀察圖象,根據(jù)圖象進(jìn)行平移即可;(2)可以做到.先求出每個(gè)等邊三角形的面積 ,得到正六邊形的面積為 ,根據(jù) 覆蓋住正六邊形即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】?jī)蓚(gè)反比例函數(shù)y= (k>1)和y= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y= 的圖象上,PC⊥x軸于點(diǎn)C,交y= 的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y= 的圖象于點(diǎn)B,BE⊥x軸于點(diǎn)E,當(dāng)點(diǎn)P在y= 圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)m,n是正實(shí)數(shù),且滿足m+n=mn時(shí),就稱點(diǎn)P(m, )為“完美點(diǎn)”,已知點(diǎn)A(0,5)與點(diǎn)M都在直線y=-x+b上,點(diǎn)B,C是“完美點(diǎn)”,且點(diǎn)B在線段AM上,若MC= ,AM=4 ,求△MBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2.
(1)求OE和CD的長(zhǎng);
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,D都在⊙O上, 的度數(shù)等于84°,CA是∠OCD的平分線,則∠ABD+∠CAO=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面圖形都是由同樣大小的平行四邊形按一定的規(guī)律組成,其中,第①個(gè)圖形一共有1個(gè)平行四邊形,第②個(gè)圖形一共有5個(gè)平行四邊形,第③個(gè)圖形一共有11個(gè)平行四邊形,……,則第⑥個(gè)圖形中平行四邊形的個(gè)數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船位于燈塔P的北偏東30°方向,距離燈塔18海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東55°方向上的B處,此時(shí)漁船與燈塔P的距離約為海里(結(jié)果取整數(shù))(參考數(shù)據(jù):sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰直角三角形,AC=BC=2,D是邊AB上一動(dòng)點(diǎn)(A、B兩點(diǎn)除外),將△CAD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)角α得到△CEF,其中點(diǎn)E是點(diǎn)A的對(duì)應(yīng)點(diǎn),點(diǎn)F是點(diǎn)D的對(duì)應(yīng)點(diǎn).

(1)如圖1,當(dāng)α=90°時(shí),G是邊AB上一點(diǎn),且BG=AD,連接GF.求證:GF∥AC;
(2)如圖2,當(dāng)90°≤α≤180°時(shí),AE與DF相交于點(diǎn)M.
①當(dāng)點(diǎn)M與點(diǎn)C、D不重合時(shí),連接CM,求∠CMD的度數(shù);
②設(shè)D為邊AB的中點(diǎn),當(dāng)α從90°變化到180°時(shí),求點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,點(diǎn)C為半徑OA的中點(diǎn),過點(diǎn)C作CD⊥OA交弦AB于點(diǎn)E,連接BD,且DE=DB.
(1)判斷BD與⊙O的位置關(guān)系,并說明理由;
(2)若CD=15,BE=10,tanA= ,求⊙O的直徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案