精英家教網 > 初中數學 > 題目詳情

【題目】甲乙兩人做擲一個均勻小立方體的游戲,立方體的每個面上分別標有數字1,2,3,45,6,任意擲出小立方體后,若朝上的數字小于3,則甲獲勝;若朝上的數字大于3 ,則乙獲勝.你認為這個游戲對甲乙雙方公平嗎?為什么?你能不能就上面的小立方體設計一個較為公平的游戲?

【答案】不公平,理由見解析;改為:若朝上的數字小于4,則甲獲勝;若朝上的數字大于3 ,則乙獲勝.

【解析】

根據已知的題意,求出小于3和大于3的數字,再分別求出概率,看概率是否相等,即可得出答案.

解:數字小于3的有12,共兩個;數字大于3的有4、56,共三個

∴數字小于3的概率為:

數字大于3的概率為:

故不公平.

改為:若朝上的數字小于4,則甲獲勝;若朝上的數字大于3 ,則乙獲勝.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=kx+b與反比例函數的圖象交于點A1,6),B3,n)兩點.

1)求一次函數的表達式;

2)在y軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及PAB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綠水青山,就是金山銀山.某旅游景區(qū)為了保護環(huán)境,需購買兩種型號的垃圾處理設備共10臺,已知每臺型設備日處理能力為12;每臺型設備日處理能力為15購回的設備日處理能力不低于140.

(1)請你為該景區(qū)設計購買兩種設備的方案;

(2)已知每臺型設備價格為3萬元,每臺型設備價格為4.4萬元.廠家為了促銷產品,規(guī)定貨款不低于40萬元時,則按9折優(yōu)惠;:采用(1)設計的哪種方案,使購買費用最少,為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,D、EBC邊上的點,BDDEEC=321,MAC邊上,CMMA=12,BMAD,AEH,G,則BHHGGM等于(

A. 421 B. 531 C. 25125 D. 512410

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明和幾位同學做手的影子游戲時,發(fā)現對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.

1)如圖,垂直于地面放置的正方形框架ABCD,邊長AB30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .

2)不改變中燈泡的高度,將兩個邊長為30cm的正方形框架按圖擺放,請計算此時橫向影子AB,DC的長度和為多少?

3)有n個邊長為a的正方形按圖擺放,測得橫向影子ABDC的長度和為b,求燈泡離地面的距離.(寫出解題過程,結果用含a,b,n的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABD中,CBD上一點,使得CACD,過點CCEADAB于點E,過點DDFADAC的處長線于點F

1)若CD3,求AF的長;

2)若∠B30°,∠ADC40°,求證:ACEC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點M是ABC內一點,過點M分別作直線平行于ABC的各邊,所形成的三個小三角形1、△2、△3(圖中陰影部分)的面積分別是1、4、25.則ABC的面積是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,AC=BC,CD=CE,ACB=DCE=αAD、BE相交于點M,連接CM

(1)求證:BE=AD;并用含α的式子表示∠AMB的度數;

(2)當α=90°時,取AD,BE的中點分別為點PQ,連接CPCQ,PQ如圖2,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從謝家集到田家庵的用時時間,在每條線路上隨機選取了450個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數據,統計如下:

用時的頻數 用時

線路

合計

3

260

167

23

450

121

160

166

124

450

26

50

122

278

450

早高峰期間,乘坐__________(“3”,“121“26路”)線路上的公交車,從謝家集到田家庵“用時不超過50分鐘”的可能性最大.

查看答案和解析>>

同步練習冊答案