【題目】在中,,,點(diǎn)D在邊上,將繞點(diǎn)A逆時(shí)針轉(zhuǎn),使與重合,點(diǎn)D的對應(yīng)點(diǎn)是E.若點(diǎn)B、D、E在同一條直線上,則的度數(shù)為_____(用含的代數(shù)式表示).
【答案】90°-1.5
【解析】
由于△ABD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)到△ACE的位置(點(diǎn)B與點(diǎn)C重合,點(diǎn)D與點(diǎn)E重合),根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,∠BAD=∠CAE,根據(jù)等腰三角形的性質(zhì)得到∠ADE=∠AED,然后根據(jù)三角形外角的性質(zhì)及三角形內(nèi)角和定理可計(jì)算出∠ABD的度數(shù).
∵△ABD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)到△ACE的位置(點(diǎn)B與點(diǎn)C重合,點(diǎn)D與點(diǎn)E重合),∴AD=AE,∠BAD=∠CAE,
∴∠ADE=∠AED.
∵∠BAC=,
∴∠DAE=,∠ADE=∠AED=∠ABD+∠BAD=∠ABD+.
∵∠DAE+∠ADE+∠AED=180°,
∴+∠ABD++∠ABD+=180°,
∴∠ABD==90°-1.5.
故答案為:90°-1.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中點(diǎn).
(1)求證:∠EBD=∠EDB
(2)若∠BED=120°,試判斷△BDC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線在平面直角坐標(biāo)系中的位置如圖所示,則下列結(jié)論:
①;②;③;④.
其中,正確的結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為正方形外的一點(diǎn),,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)旋轉(zhuǎn)至點(diǎn),且,則的度數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在邊BC上,∠1=∠2,∠C=∠AED,BC=DE
(1)求證:AB=AD
(2)若∠C=70°,求∠BED的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號以身高作為標(biāo)準(zhǔn),共分為6種型號).
根據(jù)以上信息,解答下列問題:
(1)該班共有________名學(xué)生.
(2)在條形統(tǒng)計(jì)圖中,請把空缺部分補(bǔ)充完整.
(3)該班學(xué)生所穿校服型號的眾數(shù)為__________型號,中位數(shù)為_________型號.
(4)若該校九年級有學(xué)生500人,請你估計(jì)穿175型號校服的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊矩形紙片,,.將紙片折疊,使得邊落在邊上,折痕為,再將沿向右翻折,與的交點(diǎn)為,則的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(﹣2,1)、B(1,2).
(1)作出點(diǎn)A、B關(guān)于x軸的對稱點(diǎn)A1、B1,并直接寫出A1 、B1 ;
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,畫出點(diǎn)P,并寫出點(diǎn)P的坐標(biāo);
(3)在如圖4×4的正方形網(wǎng)格中,在格點(diǎn)上找一點(diǎn)C,使△ABC為等腰三角形,符合條件的點(diǎn)C的個(gè)數(shù)為 (直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com