【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,動點P從點B出發(fā),以每秒1個單位長度的速度沿折線BA→AC運動到點C,同時動點Q從點A出發(fā),以相同速度沿折線AC→CD運動到點D,當一個點停止運動時,另一個點也隨之停止.設△APQ的面積為y,運動時間為x秒,則下列圖象能大致反映y與x之間函數(shù)關系的是( 。
A. B.
C. D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-x+4與x軸交于A點,與y軸交于B點,動點P從A點出發(fā),以每秒2個單位的速度沿AO方向向點O勻速運動,點E是點B以Q為對稱中心的對稱點,同時動點Q從B點出發(fā),以每秒1個單位的速度沿BA方向向點A勻速運動,當一個點停止運動,另一個點也隨之停止運動,連結PQ,設P,Q兩點運動時間為t秒(0<t≤2).
(1)直接寫出A,B兩點的坐標.
(2)當t為何值時,PQ∥OB?
(3)四邊形PQBO面積能否是△ABO面積的;若能,求出此時t的值;若不能,請說明理由;
(4)當t為何值時,△APE為直角三角形?(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當x>0時,的解集.
(3)點P是x軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是矩形,AB=2,BC=4,E為BC邊上一動點且不與B、C重合,連接AE;
(1)如圖1,過點E作EN⊥AE交CD于點N
①若BE=1,求CN的長;②將△ECN沿EN翻折,點C恰好落在邊AD上,求BE的長;
(2)如圖2,連接BD,設BE=m,試用含m的代數(shù)式表示S四邊形CDFE:S△ADF值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -6 C. -4 D. -
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在Rt△ABC中,∠ACB=90°,D是BC邊上一點,連接AD,分別以CD和AD為直角邊作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,點E,F在BC下方,連接EF.
(1)如圖1,當BC=AC,CE=CD,DF=AD時,
求證:①∠CAD=∠CDF,
②BD=EF;
(2)如圖2,當BC=2AC,CE=2CD,DF=2AD時,猜想BD和EF之間的數(shù)量關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是( 。
①△ABC與△DEF是位似圖形②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長比為1:2④△ABC與△DEF的面積比為4:1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,D是△ABC內(nèi)一點,連接AD,BD.在BD左側(cè)作Rt△BDE,使∠BDE=90°,以AD和DE為鄰邊作ADEF,連接CD,DF.
(1)若AC=BC,BD=DE.
①如圖1,當B,D,F三點共線時,CD與DF之間的數(shù)量關系為 .
②如圖2,當B,D,F三點不共線時,①中的結論是否仍然成立?請說明理由.
(2)若BC=2AC,BD=2DE,,且E,C,F三點共線,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB.
(1)求∠APB的大小.
(2)說明線段AC、CD、BD之間的數(shù)量關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com