【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A1,4),B4,n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫(xiě)出當(dāng)x0時(shí),的解集.

3)點(diǎn)Px軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最小.

【答案】1,y=﹣x+5;(20x1x4;(3P的坐標(biāo)為(,0),見(jiàn)解析.

【解析】

1)把A1,4)代入y,求出m4,把B4,n)代入y,求出n1,然后把把A1,4)、(4,1)代入ykx+b,即可求出一次函數(shù)解析式;

2)根據(jù)圖像解答即可;

3)作B關(guān)于x軸的對(duì)稱點(diǎn)B′,連接AB′,交x軸于P,此時(shí)PA+PBAB′最小,然后用待定系數(shù)法求出直線AB′的解析式即可.

解:(1)把A1,4)代入y,得:m4

反比例函數(shù)的解析式為y;

B4,n)代入y,得:n1,

∴B41),

A1,4)、(41)代入ykx+b,

得:

解得:,

一次函數(shù)的解析式為y=﹣x+5

2)根據(jù)圖象得當(dāng)0x1x4,一次函數(shù)y=﹣x+5的圖象在反比例函數(shù)y的下方;

當(dāng)x0時(shí),kx+b的解集為0x1x4;

3)如圖,作B關(guān)于x軸的對(duì)稱點(diǎn)B′,連接AB′,交x軸于P,此時(shí)PA+PBAB′最小,

∵B41),

∴B′4,﹣1),

設(shè)直線AB′的解析式為ypx+q

,

解得

直線AB′的解析式為

y0,得

解得x,

點(diǎn)P的坐標(biāo)為(0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CE,DF,下列說(shuō)法不正確的是  

A. 四邊形CEDF是平行四邊形

B. 當(dāng)時(shí),四邊形CEDF是矩形

C. 當(dāng)時(shí),四邊形CEDF是菱形

D. 當(dāng)時(shí),四邊形CEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC5EBC邊上的一個(gè)動(dòng)點(diǎn),DFAE,垂足為點(diǎn)F,連結(jié)CF

1)若AEBC

①求證:ABE≌△DFA;②求四邊形CDFE的周長(zhǎng);③求tanFCE的值;

2)探究:當(dāng)BE為何值時(shí),CDF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問(wèn)卷調(diào)查的學(xué)生只能從以下六個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

種類

A

B

C

D

E

F

上學(xué)方式

電動(dòng)車(chē)

私家車(chē)

公共交通

自行車(chē)

步行

其他

某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計(jì)圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計(jì)圖

根據(jù)以上信息,回答下列問(wèn)題:

(1)參與本次問(wèn)卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.

(2)在扇形統(tǒng)計(jì)圖中,求E類對(duì)應(yīng)的扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若將AC、D、E這四類上學(xué)方式視為綠色出行,請(qǐng)估計(jì)該校每天綠色出行的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AEBF交于點(diǎn)O,點(diǎn)OCG上,根據(jù)尺規(guī)作圖的痕跡,判斷下列說(shuō)法不正確的是(  )

A. AE、BF是△ABC的內(nèi)角平分線

B. CG也是△ABC的一條內(nèi)角平分線

C. AOBOCO

D. 點(diǎn)O到△ABC三邊的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A1,-4)為拋物線的頂點(diǎn),點(diǎn)Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)若點(diǎn)Qy軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)ykx+b的圖象經(jīng)過(guò)(﹣4,﹣2),(1,8)兩點(diǎn).

1)求該一次函數(shù)的表達(dá)式;

2)如圖,該一次函數(shù)的圖象與反比例函數(shù)y的圖象相交于點(diǎn)A,B,與y軸交于點(diǎn)C,且ABBC,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCOCD的中點(diǎn),延長(zhǎng)AOBC的延長(zhǎng)線于點(diǎn)E,且BCCE

1)求證:△AOD≌△EOC;

2)若∠BAE90°,AB6,OE4,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F

(1)求證:ACO的切線;

(2)CF2,CE4,求O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案