【題目】如圖,為的直徑,,為上的兩點(diǎn),平分,于.
求證:為的切線;
過點(diǎn)作于,如圖,判斷和,之間的數(shù)量關(guān)系,并證明之;
若,,求圖中陰影部分的面積.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)連接OC,如圖1,由AC平分∠EAB得到∠1=∠2,加上∠2=∠3,則∠1=∠3,于是可判斷OC∥AD,則有AD⊥CD可判斷OC⊥CD,然后根據(jù)切線的判定定理得到CD為⊙O的切線;
(2)連結(jié)CE,如圖2,根據(jù)角平分線的性質(zhì)得CD=CF,再證明Rt△ACD≌△ACF得到AD=AF,接著證明Rt△DEC∽Rt△DCA,由相似的性質(zhì)得DE:DC=DC:DA,然后利用等線段代換即可得到CF2=DEAF;
(3)設(shè)⊙O的半徑為r,由AD=AF,AD﹣OA=1.5可得到OF=1.5,再證明Rt△ACF∽Rt△ABC,利用相似比可計(jì)算出r=3,接著在Rt△FCO中,利用余弦的定義可求出∠COB=60°,然后根據(jù)扇形的面積公式和等邊三角形面積公式和S陰影部分=S扇形BOC﹣S△BOC進(jìn)行計(jì)算即可.
(1)連接OC,如圖1.
∵AC平分∠EAB,∴∠1=∠2.
∵OA=OC,∴∠2=∠3,∴∠1=∠3,∴OC∥AD.
∵AD⊥CD,∴OC⊥CD,∴CD為⊙O的切線;
(2)CF2=AFDE.理由如下:
連結(jié)CE,如圖2.
∵AC平分∠EAB,CD⊥AE,CF⊥AB,∴CD=CF.在Rt△ACD和△ACF中,,∴Rt△ACD≌△ACF,∴AD=AF.
∵四邊形CEAB內(nèi)接于⊙O,∴∠DEC=∠B.
∵AB是⊙O的直徑,∴∠ACB=90°,∴∠ABC+∠2=90°,而∠1+∠ACD=90°,∠1=∠2,∴∠DEC=∠ACD,∴Rt△DEC∽Rt△DCA,∴DE:DC=DC:DA,∴DC2=DEDA,∴CF2=DEAF;
(3)設(shè)⊙O的半徑為r.
∵AD=AF,而AD﹣OA=1.5,∴AF=AD=OA+OF=r+1.5,∴OF=1.5.
∵∠CAB=∠FAC,∴Rt△ACF∽Rt△ABC,∴=,即=,解得:r=3或r=﹣(舍去).
在Rt△FCO中,∵cos∠COF===,∴∠COB=60°,∴S陰影部分=S扇形BOC﹣S△BOC
=﹣×32=π﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過40,每件提成4元;若當(dāng)日攪件數(shù)超過40,超過部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:
(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問題:
①估計(jì)甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA⊥AB,垂足為 A,AB=24,AC=12,射線 BM⊥AB,垂足為 B, 一動(dòng)點(diǎn) E 從 A點(diǎn)出發(fā)以 3 厘米/秒沿射線 AN 運(yùn)動(dòng),點(diǎn) D 為射線 BM 上一動(dòng)點(diǎn), 隨著 E 點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持 ED=CB,當(dāng)點(diǎn) E 經(jīng)過______秒時(shí),△DEB 與△BCA 全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年圣誕節(jié)前夕,小明、小麗兩位同學(xué)到某超市調(diào)研一種襪子的銷售情況,
這種襪子的進(jìn)價(jià)為每雙 1 元,請(qǐng)根據(jù)小麗提供的信息解決小明提出的問題.
小麗:每雙定價(jià) 2 元,每天能賣出 500 雙,而且這種襪子的售價(jià)每上漲 0.1 元,其每天的銷售量將減少 10 雙.
小明:照你所說,如果要實(shí)現(xiàn)每天 800 元的銷售利潤(rùn),那該如何定價(jià)?別忘了,物價(jià)局有規(guī)定,售價(jià)不能超過進(jìn)價(jià)的 300%呦.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,EF//BC交AC、CF于M、F,若EM=3,則CE2+CF2 的值為( )
A.36B.9C.6D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為降低空氣污染,公交公司決定全部更換節(jié)能環(huán)保的燃?xì)夤卉嚕?jì)劃購買A型和B型兩種公交車共10輛,其中每臺(tái)的價(jià)格,年均載客量如表:
A型 | B型 | |
價(jià)格(萬元/輛) | a | b |
年均載客量(萬人/年/輛) | 60 | 100 |
若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元
(1)求購買每輛A型公交車和每輛B型公交車分別多少萬元?
(2)如果該公司購買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車年均載客總和不少于680萬人次,有哪幾種購車方案?請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購車總費(fèi)用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,A(2,4),B(4,1),C(-3,4)
(1)平移線段AB到線段CD,使點(diǎn)A與點(diǎn)C重合,寫出點(diǎn)D的坐標(biāo).
(2)直接寫出線段AB平移至線段CD處所掃過的面積.
(3)平移線段AB,使其兩端點(diǎn)都在坐標(biāo)軸上,則點(diǎn)A的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰Rt△ABC中,∠BAC=90°.點(diǎn)D從點(diǎn)B出發(fā)在線段BC移動(dòng),以AD為腰作等腰Rt△ADE,∠DAE=90°.連接CE.
⑴如圖,求證:△ACE≌△ABD;
⑵求證:BD2+CD2=2AD2;
⑶若AB=4,試問:△DCE的面積有沒有最大值,如沒有請(qǐng)說明理由,如有請(qǐng)求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明的爸爸在池邊開了一塊四邊形土地種蔬菜,爸爸讓小明計(jì)算一下土地的面積,以便計(jì)算產(chǎn)量.小明找了米尺和測(cè)角儀,測(cè)得AB=3米,BC=4米,CD=12米,DA=13米,∠B=90°.
⑴若連接AC,試證明:△ACD是直角三角形;
⑵請(qǐng)你幫小明計(jì)算這塊土地的面積為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com