【題目】已知是的直徑,,、分別與圓相交于、,那么下列等式中一定成立的是( )
A. AEBF=AFCF B. AEAB=AOAD'
C. AEAB=AFAC D. AEAF=AOAD
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學概念:百度百科上這樣定義絕對值函數(shù):y=│x│=
并給出了函數(shù)的圖像(如圖).
方法遷移
借鑒研究正比例函數(shù)y=kx與一次函數(shù)y=kx+b(k,b是常數(shù),且k≠0)之間關(guān)系的經(jīng)驗,我們來研究函數(shù)y=│x+a│(a是常數(shù))的圖像與性質(zhì).
“從‘1’開始”
我們嘗試從特殊到一般,先研究當a=1時的函數(shù)y=│x+1│.
按照要求完成下列問題:
(1)觀察該函數(shù)表達式,直接寫出y的取值范圍;
(2)通過列表、描點、畫圖,在平面直角坐標系中畫出該函數(shù)的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當a的值為-2,-,2,3,…時函數(shù)y=│x+a│的圖像與性質(zhì),
嘗試總結(jié):
①函數(shù)y=│x+a│(a≠0)的圖像怎樣由函數(shù)y=│x│的圖像平移得到?
②寫出函數(shù)y=│x+a│的一條性質(zhì).
知識應用
(4)已知A(x1,y1),B(x2,y2)是函數(shù)y=│x+a│的圖像上的任意兩點,且滿足x1<x2≤-1時, y1>y2,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點C'處,連接C'D交AB于點E,連接BC',當△BC'D是直角三角形時,DE的長為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準備把“茶路”融入“絲路”,經(jīng)計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.
(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;
(2)若該經(jīng)銷商一次購進兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進貨量不超過A級別茶葉的2倍,請你幫該經(jīng)銷商設計一種進貨方案使銷售總利潤最大,并求出總利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1的兩個長方形可以按不同的形式拼成圖2和圖3兩個圖形.
(1)在圖2中的陰影部分面積可表示為 ,在圖3中的陰影部分的面積可表示為 ,由這兩個陰影部分的面積得到的一個等式是( )
A.
B.
C.
(2)根據(jù)你得到的等式解決下面的問題:
①計算:;
②解方程:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直線l上擺放著三個三角形:△ABC、△HFG、△DCE,已知BC=CE,F(xiàn)、G分別是BC、CE的中點,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.設圖中三個四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S1=_____,S2=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分9分)如圖,以⊿ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點分別為D,E,且.
(1)試判斷⊿ABC的形狀,并說明理由;
(2)已知半圓的半徑為5,BC=12,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com