已知:如圖,△BCE、△ACD分別是以BE、AD為斜邊的直角三角形,且BE=AD,△CDE是等邊三角形.求證:△ABC是等邊三角形.
證明見(jiàn)解析.
【解析】
試題分析:根據(jù)等邊三角形CDE的性質(zhì)、等量代換求得∠3=∠1=60°;然后由全等三角形Rt△BCE和Rt△ACD推知對(duì)應(yīng)邊BC=AC;據(jù)此可以判定△ABC是等邊三角形.
試題解析:∵△CDE是等邊三角形,如圖:
∴EC=CD,∠1=60°.
∵BE、AD都是斜邊,
∴∠BCE=∠ACD=90°
在Rt△BCE和Rt△ACD中,
∴Rt△BCE≌Rt△ACD.
∴BC=AC.
∵∠1+∠2=90°,∠3+∠2=90°,
∴∠3=∠1=60°.
∴△ABC是等邊三角形.
考點(diǎn): 1.全等三角形的判定與性質(zhì);2.等邊三角形的判定與性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com