【題目】如圖,已知⊙O的半徑為2,弦AB⊥半徑OC,沿AB將弓形ACB翻折,使點C與圓心O重合,則月牙形(圖中實線圍成的部分)的面積是

【答案】 π+2
【解析】解:連接OA,OB,
∵OC⊥AB于E,
根據(jù)題意,得OE= OC= OB=1,
則∠ABO=30°,BE= = ,
∴AB=2 ,∠AOB=120°.
S弓形ACB=S扇形AOB﹣SAOB= AB×EO= π﹣ ,
則月牙形(圖中實線圍成的部分)的面積是:S﹣2S弓形ACB=4π﹣2( π﹣ )= π+2 ,
所以答案是: π+2
【考點精析】根據(jù)題目的已知條件,利用扇形面積計算公式和翻折變換(折疊問題)的相關知識可以得到問題的答案,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2);折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,ODOE.

(1)請你數(shù)一數(shù),圖中有多少個角?(備注:小于平角的角);

(2)請通過計算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC是等邊三角形,點D為AB上一點,現(xiàn)將△ABC沿EF折疊,使得頂點A與D點重合,且FD⊥BC,則 的值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校的校門是伸縮門(如圖1),伸縮門中的每一行菱形有20個,每個菱形邊長為30厘米.校門關閉時,每個菱形的銳角度數(shù)為60°(如圖2);校門打開時,每個菱形的銳角度數(shù)從60°縮小為10°(如圖3).問:校門打開了多少米?(結果精確到1米,參考數(shù)據(jù):sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種“十位上的數(shù)字比個位、百位上的數(shù)字都要小”的三位數(shù)叫做“V數(shù)”如“947”就是一個“V數(shù)”.若十位上的數(shù)字為2,則從1,3,4,5中任選兩數(shù),能與2組成“V數(shù)”的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將坐標為(0,0),(2,1),(2,4),(0,3)的點依次連結起來形成一個圖案.

(1)這四個點的橫坐標保持不變,縱坐標變成原來的,將所有的四個點用線段依次連結起來,所得的圖案與原圖案相比有什么變化?

(2)縱、橫坐標分別變成原來的2倍呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)生成一種節(jié)能產(chǎn)品,投放市場供不應求.若該企業(yè)每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于120萬元.已知這種產(chǎn)品的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關系式y(tǒng)1=190﹣2x.月產(chǎn)量x(套)與生成總成本y2(萬元)存在如圖所示的函數(shù)關系.

(1)直接寫出y2(2)與x之間的函數(shù)關系式;
(2)求月產(chǎn)量x的取值范圍;
(3)當月產(chǎn)量x(套)為多少時,這種產(chǎn)品的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為激勵教師愛崗敬業(yè),某市開展了“我最喜愛的老師”評選活動.某中學確定如下評選方案:有學生和教師代表對4名候選教師進行投票,每票選1名候選教師,每位候選教師得到的教師票數(shù)的5倍與學生票數(shù)的和作為該教師的總票數(shù).以下是根據(jù)學生和教師代表投票結果繪制的統(tǒng)計表和條形統(tǒng)計圖(不完整). 學生投票結果統(tǒng)計表

候選教師

王老師

趙老師

李老師

陳老師

得票數(shù)

200

300


(1)若共有25位教師代表參加投票,則李老師得到的教師票數(shù)是多少?請補全條形統(tǒng)計圖.(畫在答案卷相對應的圖上)
(2)王老師與李老師得到的學生總票數(shù)是500,且王老師得到的學生票數(shù)是李老師得到的學生票數(shù)的3倍多20票,求王老師與李老師得到的學生票數(shù)分別是多少?
(3)在(1)、(2)的條件下,若總得票數(shù)較高的2名教師推選到市參評,你認為推選到市里的是兩位老師?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當BC=4時,求劣弧AC的長.

查看答案和解析>>

同步練習冊答案