【題目】平面直角坐標系中,直線 與x軸交于點A ,與y 軸交于點B,直線 與x軸交于點C,與直線交于點P.
(1)當k=1 時,求點C的坐標;
(2)如圖 1,點D為PA的中點,過點D作DE⊥x軸于E,交直線于點F,若DF=2DE,求k的值;
(3)如圖2,點P在第二象限內,PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ 的延長線交直線于點R,若PR=PC,求點P的坐標.
【答案】(1)(-2,0)(2)(3)(-,)
【解析】(1)解兩個函數解析式組成的方程組即可求解;
(2)過點P作PG⊥DF于點G,易證△PDG≌△ADE,過點P作PH⊥CA于點H,可證點H是AC中點,則H的坐標即可求得,進而求得點P的坐標,再求得點K的值即可;
(3)Rt△PMC≌Rt△PQR,則RQ=MC,設NR=NC=a,則R(﹣a﹣2,a),代入y=﹣x+3,求得a的值,設P(m,n),根據P在直線l1上和RQ=MC即可列方程組求解.
(1)當k=1時,直線l2為y=x+2.
解方程組,
解得,
∴P(,);
(2)當y=0時,kx+2k=0,
∵k≠0,
∴x=﹣2,
∴C(﹣2,0)則OC=2,
當y=0時,﹣x+3=0,
∴x=6,
∴A(6,0),OA=6,
過點P作PG⊥DF于點G,
在△PDG和△ADE中,
,
∴△PDG≌△ADE,
得DE=DG=DF,
∴PD=PF,
∴∠PFD=∠PDF
∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°
∴∠PCA=∠PAC,
∴PC=PA
過點P作PH⊥CA于點H,
∴CH=CA=4,
∴OH=2,
當x=2時,y=﹣×2+3=2代入y=kx+2k,得k=;
(3)直角△PQR和直角△PMC中,
,
∴Rt△PMC≌Rt△PQR,
∴CM=RQ,
∴NR=NC,
設NR=NC=a,則R(﹣a﹣2,a),
代入y=﹣x+3,
得﹣(﹣a﹣2)+3=a,解得a=8,
設P(m,n),則,
解得,
∴P(,).
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;
(2)平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(3)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請在坐標系中作出旋轉中心S并寫出旋轉中心S的坐標:S
(4)在x軸上有一點P,使得PA+PB的值最小,請作圖標出P點并寫出點P的坐標.P .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設計調查問卷時,下列提問是否合適?如果不合適的話應該怎樣改進?
(1)你上學時使用的交通工具是
.汽車.摩托車.步行.其他
(2)你對老師的教學滿意嗎?
.比較滿意.滿意.非常滿意.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣2x2+(m+9)x﹣6的對稱軸是x=2.
(1)求拋物線表達式和頂點坐標;
(2)將該拋物線向右平移1個單位,平移后的拋物線與原拋物線相交于點A,求點A的坐標;
(3)拋物線y=﹣2x2+(m+9)x﹣6與y軸交于點C,點A關于平移后拋物線的對稱軸的對稱點為點B,兩條拋物線在點A、C和點A、B之間的部分(包含點A、B、C) 記為圖象M.將直線y=2x﹣2向下平移b(b>0)個單位,在平移過程中直線與圖象M始終有兩個公共點,請你寫出b的取值范圍 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是等邊△ABC內的一點,且PA=5,PB=4,PC=3,將△APB繞點B逆時針旋轉,得到△CQB.求:
(1)點P與點Q之間的距離;
(2)求∠BPC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義一種對正整數n的“F”運算:①當n為奇數時,F(n)=3n+1;②當n為偶數時,F(n)=(其中k是使F(n)為奇數的正整數)……,兩種運算交替重復進行,例如,取n=24,則:
若n=13,則第2018次“F”運算的結果是( 。
A. 1 B. 4 C. 2018 D. 42018
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀資料:
如圖1,在平面直角坐標系xOy中,A,B兩點的坐標分別為A(x1 , y1),B(x2 , y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A,B兩點間的距離為AB= .
我們知道,圓可以看成到圓心的距離等于半徑的點的集合,如圖2,在平面直角坐標系xOy中,A (x,y)為圓上任意一點,則點A到原點的距離的平方為OA2=|x﹣0|2+|y﹣0|2 , 當⊙O的半徑OA為r時,⊙O的方程可寫為:x2+y2=r2 .
問題拓展:
如果圓心坐標為P (a,b),半徑為r,那么⊙P的方程可以寫為。▁﹣a)2+(y﹣b)2=r2 .
綜合應用:
如圖3,⊙P與x軸相切于原點O,P點坐標為(0,6),A是⊙P上一點,連接OA,使∠POA=30°,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.
①證明AB是⊙P的切線;
②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以點Q為圓心,OQ長為半徑的⊙Q的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com