【題目】某公園草坪的防護欄由100段形狀相同的拋物線形構件組成,為了牢固起見,每段護欄需要間距0.4m加設一根不銹鋼的支柱,防護欄的最高點距底部0.5m(如圖),則這條防護欄需要不銹鋼支柱的總長度至少為( )
A. 50m B. 100m C. 160m D. 200m
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,AB表示A點和B點之間的距離,且a、b滿足|a+4|+|b+3a|=0.
(1)求A、B兩點之間的距離;
(2)若在數(shù)軸上存在一點C,且AC+BC=19,求C點表示的數(shù);
(3)如圖2,若在原點O處放一擋板,一小球甲從點A處以2個單位/秒的速度向左運動;兩秒后另一個小球乙從點B處以3個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看做一點)乙球以4個單位/秒的速度向相反方向運動,設甲球運動的時間為t(秒).
①分別表示甲、乙兩小球到原點的距離(用含t的式子表示);
②求甲、乙兩小球到原點的距離相等時,甲球所在位置對應的數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“雙十一”購物街中,某兒童品牌玩具專賣店購進了兩種玩具,其中類玩具的金價比玩具的進價每個多元.經調查發(fā)現(xiàn):用元購進類玩具的數(shù)量與用元購進類玩具的數(shù)量相同.
(1)求的進價分別是每個多少元?
(2)該玩具店共購進了兩類玩具共個,若玩具店將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進類玩具多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃銷售A,B兩種型號的商品,經調查,用1500元采購A型商品的件數(shù)是用600元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價多30元.
(1)求一件A,B型商品的進價分別為多少元?
(2)若該商場購進A,B型商品共100件進行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),已知A型商品的售價為200元/件,B型商品的售價為180元/件,且全部能售出,求該商品能獲得的利潤最小是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,的直角邊OB在x軸的正半軸上,反比例函數(shù)的圖象經過斜邊OA的中點D,與直角邊AB相交于點C.
①若點,求點C的坐標:
②若,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”黃金周期間,某市在天中外出旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 | 日 | 日 | 日 | 日 | 日 | 日 | 日 |
人數(shù)變化(萬人) |
(1)若月日外出旅游人數(shù)為,那么月日外出旅游的人數(shù)是多少?
(2)請判斷七天內外出旅游人數(shù)最多的是哪天?最少的是哪天?它們相差多少?
(3)如果最多一天有出游人數(shù)萬人,那么若月日外出旅游的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】黨的十八大提出,倡導富強、民主、文明、和諧,倡導自由、平等、公正、法治,倡導愛國、敬業(yè)、誠信、友善,積極培育和踐行社會主義核心價值觀,這24個字是社會主義核心價值觀的基本內容.其中:
“富強、民主、文明、和諧”是國家層面的價值目標;
“自由、平等、公正、法治”是社會層面的價值取向;
“愛國、敬業(yè)、誠信、友善”是公民個人層面的價值準則.
小光同學將其中的“文明”、“和諧”、“自由”、“平等”的文字分別貼在4張硬紙板上,制成如右圖所示的卡片.將這4張卡片背面朝上洗勻后放在桌子上,從中隨機抽取一張卡片,不放回,再隨機抽取一張卡片.
(1)小光第一次抽取的卡片上的文字是國家層面價值目標的概率是 ;
(2)請你用列表法或畫樹狀圖法,幫助小光求出兩次抽取卡片上的文字一次是國家層面價值目標、一次
是社會層面價值取向的概率(卡片名稱可用字母表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A1、B1、C1分別為△ABC的邊BC、CA、AB的中點,點A2、B2、C2分別為△A1B1C1的邊B1C1、C1A1、A1B1的中點,若△ABC的面積為1,則△A2B2C2的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫作△ABC的費馬點.
(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.
①求證: △ABP∽△BCP;
②若PA=3,PC=4,求PB的長;
(2)如圖②,已知銳角△ABC,分別以AB,AC為邊向外作正△ABE和正△ACD,CE和BD相交于點P,連接AP.
①求∠CPD的度數(shù);
②求證:點P為△ABC的費馬點.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com