如圖,反比例函數(shù)y=(k<0)的圖象與矩形ABCD的邊相交于E、F兩點,且BE=2AE,E(﹣1,2).

(1)求反比例函數(shù)的解析式;

(2)連接EF,求△BEF的面積.


解:(1)∵反比例函數(shù)y=(k<0)的圖象過點E(﹣1,2),

∴k=﹣1×2=﹣2,

∴反比例函數(shù)的解析式為y=﹣;

(2)∵E(﹣1,2),

∴AE=1,OA=2,

∴BE=2AE=2,

∴AB=AE+BE=1+2=3,

∴B(﹣3,2).

將x=﹣3代入y=﹣,得y=,

∴CF=,

∴BF=2﹣=,

∴△BEF的面積=BE•BF=×2×=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


下列計算正確的是

A.   B.    C.     D.

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知正方形ABCD的邊長為2,E是邊BC上的動點,BF⊥AE交CD于點F,垂足為G,連結(jié)CG.下列說法:①AG>GE;②AE=BF;③點G運動的路徑長為π;④CG的最小值為﹣1.其中正確的說法是  .(把你認(rèn)為正確的說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,⊙O是正五邊形ABCDE的外接圓,這個正五邊形的邊長為a,半徑為R,邊心距為r,則下列關(guān)系式錯誤的是( 。

 

A.

R2﹣r2=a2

B.

a=2Rsin36°

C.

a=2rtan36°

D.

r=Rcos36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


觀察下列圖形規(guī)律:當(dāng)n= B 時,圖形“●”的個數(shù)和“△”的個數(shù)相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線y=(x+2)(x﹣4)與x軸交于點A、B(點A位于點B的左側(cè)),與y軸交于點C,CD∥x軸交拋物線于點D,M為拋物線的頂點.

(1)求點A、B、C的坐標(biāo);

(2)設(shè)動點N(﹣2,n),求使MN+BN的值最小時n的值;

(3)P是拋物線上一點,請你探究:是否存在點P,使以P、A、B為頂點的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在長方形ABCD中AB=16,如圖所示裁出一扇形ABE,將扇形圍成一個圓錐(AB和AE重合),則此圓錐的底面半徑為(  )

 

A.

4

B.

16

C.

4

D.

8

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在△AOB中,C,D分別是OA,OB邊上的點,將△OCD繞點O順時針旋轉(zhuǎn)到△OC′D′.

(1)如圖1,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點,證明:①AC′=BD′;②AC′⊥BD′;

(2)如圖2,若△AOB為任意三角形且∠AOB=θ,CD∥AB,AC′與BD′交于點E,猜想∠AEB=θ是否成立?請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)(﹣2,0),△ABO是直角三角形,∠AOB=60°.現(xiàn)將Rt△ABO繞原點O按順時針方向旋轉(zhuǎn)到Rt△A′B′O的位置,則此時邊OB掃過的面積為  

 

查看答案和解析>>

同步練習(xí)冊答案