【題目】綜合與實踐:
閱讀理解:數學興趣小組在探究如何求的值,經過思考、討論、交流,得到以下思路:
如圖1,作,使,,延長至點,使,連接.
設,則,..
請解決下列問題:
(1)類比求解:求出的值;
(2)問題解決:如圖2,某住宅樓的后面有一建筑物,當光線與地面的夾角是時,住宅在建筑物的墻上留下高的影子;而當光線與地面的夾角是時,住宅樓頂在地面上的影子與墻角有的距離(,,在一條直線上).求住宅樓的高度(結果保留根號);
(3)探究發(fā)現:如圖3,小明用硬紙片做了兩個直角三角形,在中,,,;在中,,,.他將的斜邊與的斜邊重合在一起,并將沿方向移動.在移動過程中,,兩點始終在邊上(移動開始時點與點重合).探究在移動過程中,是否存在某個位置,使得?如果存在,直接寫出的長度;如果不存在,請說明理由.
科目:初中數學 來源: 題型:
【題目】某果園的工人需要摘蘋果園和梨園的果實,蘋果園的果實是梨園的倍,如果前三天工人都在蘋果園摘果實,第四天,的工人到梨園摘果實,剩下的工人仍在蘋果園摘果實,則第四天結束后蘋果園的果實全部摘完,梨園剩下的果實正好是名工人天的工作量.如果前三天工人都在蘋果園摘果實,要使蘋果和梨同時摘完,則第四天開始,再外請一個工人的情況下,應該安排___人摘蘋果.(假定工人們每人每天摘果實的數量是相等的,且每人每天的工作時間相等)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰直角△OEF在坐標系中,有E(0,2),F(﹣2,0),將直角△OEF繞點E逆時針旋轉90°得到△ADE,且A在第一象限內,拋物線y=ax2+bx+c經過點A,E.且2a+3b+5=0.
(1)求拋物線的解析式.
(2)過ED的中點O'作O'B⊥OE于B,O'C⊥OD于C,求證:OBO'C為正方形.
(3)如果點P由E開始沿EA邊以每秒2厘米的速度向點A移動,同時點Q由點A沿AD邊以每秒1厘米的速度向點D移動,當點P移動到點A時,P,Q兩點同時停止,且過P作GP⊥AE,交DE于點G,設移動的開始后為t秒.
①若S=PQ2(厘米),試寫出S與t之間的函數關系式,并寫出t的取值范圍?
②當S取最小時,在拋物線上是否存在點R,使得以P,A,Q,R為頂點的四邊形是平行四邊形?如果存在,求出R的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】移動通信公司建設的鋼架信號塔(如圖1),它的一個側面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點A、點B作兩腰的垂線段,垂足分別為B1,A1,再過A1,B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB為3米,sinα=,則水平鋼條A2B2的長度為( 。
A. 米B. 2米C. 米D. 米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】溫州茶山楊梅名揚中國,某公司經營茶山楊梅業(yè)務,以3萬元/噸的價格買入楊梅(購買的數量不超過8噸),包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(單位:萬元/噸)與銷售數量x(單位:噸)之間的函數關系如圖所示.
(1)求y與x的函數表達式?
(2)當銷售數量為多少時,該公司經營這批楊梅所獲得的毛利潤(w)最大?最大毛利潤為多少萬元?(毛利潤=銷售總收入﹣進價總成本﹣包裝總費用)
(3)經過市場調查發(fā)現,楊梅深加工后不包裝直接銷售,平均銷售價格為12萬元/噸.深加工費用y(單位:萬元)與加工數量x(單位:噸)之間的函數關系是
①當該公司銷售楊梅多少噸時,采用深加工方式與直接包裝銷售獲得毛利潤一樣?
②該公司銷售楊梅噸數在 范圍時,采用深加工方式比直接包裝銷售獲得毛利潤大些?(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文教用品商店欲購進兩種筆記本,用 元購進的種筆記本與用元購進的種筆記本的數量相同,每本種筆記本的進價比每本種筆記本的進價貴元,
(1)求兩種筆記本每本的進價分別為多少元?
(2)若該商店種筆記本每本售價元,種筆記本每本售價元,準備購進兩種筆記本共本,且這兩種筆記本全部售出后總獲利不少于元,則最多購進種筆記本多少本?.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】西安市某中學數學興趣小組在開展“保護環(huán)境,愛護樹木”的活動中,利用課外時間測量一棵古樹的高,由于樹的周圍有水池,同學們在低于樹基3.3米的一平壩內(如圖).測得樹頂A的仰角∠ACB=60°,沿直線BC后退6米到點D,又測得樹頂A的仰角∠ADB=45°.若測角儀DE高1.3米,求這棵樹的高AM.(結果保留兩位小數,≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一塊長方形的土地,寬為120m,建筑商把它分成甲、乙、丙三部分,甲和乙均為正方形,現計劃甲建住宅區(qū),乙建商場,丙地開辟成面積為3200m2的公園.若設這塊長方形的土地長為xm.那么根據題意列出的方程是_____.(將答案寫成ax2+bx+c=0(a≠0)的形式)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點,與雙曲線y=(x>0)相交于點P,PC⊥x軸于點C,且PC=2,點A的坐標為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點Q為雙曲線上點P右側的一點,且QH⊥x軸于H,當以點Q、C、H為頂點的三角形與△AOB相似時,求點Q的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com