【題目】有一塊長(zhǎng)方形的土地,寬為120m,建筑商把它分成甲、乙、丙三部分,甲和乙均為正方形,現(xiàn)計(jì)劃甲建住宅區(qū),乙建商場(chǎng),丙地開辟成面積為3200m2的公園.若設(shè)這塊長(zhǎng)方形的土地長(zhǎng)為xm.那么根據(jù)題意列出的方程是_____.(將答案寫成ax2+bx+c=0(a≠0)的形式)

【答案】x2﹣360x+32000=0

【解析】

根據(jù)敘述可以得到:甲是邊長(zhǎng)是120米的正方形,乙是邊長(zhǎng)是(x﹣120)米的正方形,丙的長(zhǎng)是(x﹣120)米,寬是[120﹣(x﹣120)]米,根據(jù)丙地面積為3200m2即可列出方程.

根據(jù)題意,

得(x﹣120)[120﹣(x﹣120)]=3200,

即x2﹣360x+32000=0.

故答案為x2﹣360x+32000=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文具店某種文具進(jìn)價(jià)為每件20元,市場(chǎng)調(diào)查反映:當(dāng)售價(jià)為每件30元時(shí),平均每星期可售出140件;而昂每件售價(jià)漲1元,平均每星期少售出10件,設(shè)每件漲價(jià)元,平均每星期的總利潤(rùn)為元.

1)寫出的函數(shù)關(guān)系式,并求出自變量的取值范圍;

2)如何定價(jià)才能使每星期的利潤(rùn)最大?且每星期的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

閱讀理解:數(shù)學(xué)興趣小組在探究如何求的值,經(jīng)過思考、討論、交流,得到以下思路:

如圖1,作,使,,延長(zhǎng)至點(diǎn),使,連接.

設(shè),則,..

請(qǐng)解決下列問題:

1)類比求解:求出的值;

2)問題解決:如圖2,某住宅樓的后面有一建筑物,當(dāng)光線與地面的夾角是時(shí),住宅在建筑物的墻上留下高的影子;而當(dāng)光線與地面的夾角是時(shí),住宅樓頂在地面上的影子與墻角的距離(,在一條直線上).求住宅樓的高度(結(jié)果保留根號(hào));

3)探究發(fā)現(xiàn):如圖3,小明用硬紙片做了兩個(gè)直角三角形,在中,,,;在中,,,.他將的斜邊的斜邊重合在一起,并將沿方向移動(dòng).在移動(dòng)過程中,兩點(diǎn)始終在邊上(移動(dòng)開始時(shí)點(diǎn)與點(diǎn)重合).探究在移動(dòng)過程中,是否存在某個(gè)位置,使得?如果存在,直接寫出的長(zhǎng)度;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DEBC邊上,點(diǎn)FAC邊上,將△ABD沿著AD翻折,使點(diǎn)B和點(diǎn)E重合,將△CEF沿著EF翻折,點(diǎn)C恰與點(diǎn)A重合.結(jié)論:①∠BAC=90°,②DE=EF,③∠B=2C,④AB=EC,正確的有( 。

A.①②③④B.③④C.①②④D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y2x+b的圖象與x軸的交點(diǎn)為A2,0),與y軸的交點(diǎn)為B,直線AB與反比例函數(shù)y的圖象交于點(diǎn)C(﹣1,m).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)直接寫出關(guān)于x的不等式2x+b的解集;

3)點(diǎn)P是這個(gè)反比例函數(shù)圖象上的點(diǎn),過點(diǎn)PPMx軸,垂足為點(diǎn)M,連接OP,BM,當(dāng)SABM2SOMP時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC為O的直徑,B為O上一點(diǎn),ACB=30°,延長(zhǎng)CB至點(diǎn)D,使得CB=BD,過點(diǎn)D作DEAC,垂足E在CA的延長(zhǎng)線上,連接BE.

(1)求證:BE是O的切線;

(2)當(dāng)BE=3時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)PA點(diǎn)出發(fā),按A→B→C的方向在ABBC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的面積為15,邊ABAD2,ECD中點(diǎn),以AE為直徑的⊙FABG點(diǎn),以EG為直徑的⊙HEBP點(diǎn),回答下列問題:

1)求AB、AD的長(zhǎng);

2)求證:PG為⊙F的切線;

3)求PG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若雙曲線y=kx-1與直線y=-2x+102≤x≤4時(shí)有且只有一個(gè)公共點(diǎn),則對(duì)k的取值要求是______

查看答案和解析>>

同步練習(xí)冊(cè)答案