【題目】如圖,P為正方形ABCD內一點,PA=1,PB=2,PC=3.
(1)將△ABP繞點B順時針旋轉90°,得到△BEC,請你畫出△BEC.
(2)連接PE,求證:△PEC是直角三角形;
(3)填空:∠APB的度數(shù)為 .
【答案】(1)詳見解析;(2)詳見解析;(3)135°.
【解析】
試題分析:(1)將△APB繞B點順時針旋轉90°,即將A,P,兩點繞B點順時針旋轉90°,得出△CBE即可;(2)根據(jù)旋轉的性質,得出∠PBE=∠ABC=90°,BP=BE=2,即可證得△PBE是等腰直角三角形,從而求得PE,最后根據(jù)勾股定理的逆定理,即可得到△PEC是直角三角形;(3)連接PE后,存在兩個直角三角形:Rt△PBE和Rt△PCE,先求得∠BEC的度數(shù),最后根據(jù)全等三角形的對應角相等,即可得出∠APB的度數(shù).
試題解析:(1)如圖所示,△CBE即為所求;
(2)證明:∵△BEC是由△APB繞點B順時針方向旋轉90°得到的,
∴△BEC≌△BPA,∠PBE=90°,
∴BE=BP=2,CE=PA=1,
∴△PBE是等腰直角三角形,CE2=1,
∴Rt△PBE中,PE2=PB2+BE2=4+4=8,
又∵PC=3,
∴PC2=9,
∴在△PCE中,PE2+CE2=PC2,
∴△PCE是直角三角形,且∠PEC=90°;
(3)由(2)可得,△PCE是直角三角形,△PBE是等腰直角三角形,
∴∠PEC=90°,∠BEP=45°,
∴∠BEC=90°+45°=135°,
又∵△BEC≌△BPA,
∴∠APB=∠BEC=135°.
科目:初中數(shù)學 來源: 題型:
【題目】請閱讀下列材料,并完成相應的任務:
阿基米德折弦定理
阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來最偉大的數(shù)學家之一,他與牛頓、高斯并成為三大數(shù)學王子.
阿拉伯Al﹣Binmi的譯文中保存了阿基米德折弦定理的內容,蘇聯(lián)在1964年根據(jù)Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.下面是運用“截長法”證明CD=AB+BD的部分證明過程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.
∵M是 的中點,
∴MA=MC.
…
任務:
(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知等邊△ABC內接于⊙O,AB=2,D為上一點,∠ABD=45°,AE⊥BD于點E,則△BDC的周長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗想用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.不知能否裁出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com