【題目】小麗想用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.不知能否裁出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?請說明理由.

【答案】解:不同意小明的說法.理由如下: 設面積為300平方厘米的長方形的長寬分為3x,2x,則3x2x=300,x2=50,
∴x=5 ,
∴面積為300平方厘米的長方形的長寬分為15 cm,10 cm,
∵面積為400平方厘米的正方形的邊長為20,
∴20<15 ,
∴用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.
【解析】設面積為300平方厘米的長方形的長寬分為3x,2x,則3x2x=300,x2=50,解得x=5 ,而面積為400平方厘米的正方形的邊長為20,由于15 >20,所以用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.
【考點精析】解答此題的關鍵在于理解算數(shù)平方根的相關知識,掌握正數(shù)a的正的平方根叫做a的算術平方根;正數(shù)和零的算術平方根都只有一個,零的算術平方根是零.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A.3x2+4x27x4B.2x33x36x3

C.x6÷x3x2D.x24x8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.

(1)將ABP繞點B順時針旋轉90°,得到BEC,請你畫出BEC.

(2)連接PE,求證:PEC是直角三角形;

(3)填空:APB的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,頂點為M的拋物線y=ax2+bx(a0),經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,AOB=120°.

(1)求這條拋物線的表達式;

(2)連接OM,求AOM的大;

(3)如果點C在x軸上,且ABC與AOM相似,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式計算正確的是(
A.(a+b)2=a2+b2
B.x2x3=x6
C.x2+x3=x5
D.(a33=a9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在熱氣球上A處測得塔頂B的仰角為52°,測得塔底C的俯角為45°,已知A處距地面98米,求塔高BC.(結果精確到0.1米)

【參考數(shù)據(jù):sin52°=0.79,cos52°=0.62,tan52°=1.28】

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到A3B3C3

(1)ABC與A1B1C1的位似比等于 ;

(2)在網(wǎng)格中畫出A1B1C1關于y軸的軸對稱圖形A2B2C2;

(3)請寫出A3B3C3是由A2B2C2怎樣平移得到的?

(4)設點P(x,y)為ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應點的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線經(jīng)過A﹣4,0),B0,﹣4),C2,0)三點.

1)求拋物線的解析式;

2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組圖形一定相似的是(

A.兩個菱形;B.兩個矩形;C.兩個直角梯形;D.兩個正方形.

查看答案和解析>>

同步練習冊答案