【題目】如圖1,平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+3x軸的兩個(gè)交點(diǎn)分別為A(﹣3,0),B(1,0),與y軸的交點(diǎn)為D,對(duì)稱(chēng)軸與拋物線(xiàn)交于點(diǎn)C,與x軸負(fù)半軸交于點(diǎn)H.

(1)求拋物線(xiàn)的表達(dá)式;

(2)點(diǎn)E,F(xiàn)分別是拋物線(xiàn)對(duì)稱(chēng)軸CH上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)F上方),且EF=1,求使四邊形BDEF的周長(zhǎng)最小時(shí)的點(diǎn)E,F(xiàn)坐標(biāo)及最小值;

(3)如圖2,點(diǎn)P為對(duì)稱(chēng)軸左側(cè),x軸上方的拋物線(xiàn)上的點(diǎn),PQ⊥AC于點(diǎn)Q,是否存在這樣的點(diǎn)P使△PCQ△ACH相似?若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

【答案】1y=x22x+32)故四邊形BDEF的周長(zhǎng)最小時(shí),點(diǎn)E的坐標(biāo)為(﹣1, ),點(diǎn)F坐標(biāo)為(﹣1, ),四邊形BDEF周長(zhǎng)的最小值是+1+;(3點(diǎn)P的坐標(biāo)為(﹣,

【解析】試題分析:1)將點(diǎn)A-30)、B1,0)代入拋物線(xiàn)的解析式得到關(guān)于a、b的方程組即可;

2)先求得C-1,4).將D點(diǎn)向下平移1個(gè)單位,得到點(diǎn)M,連結(jié)AM交對(duì)稱(chēng)軸于F,作DEFM交對(duì)稱(chēng)軸于E點(diǎn),則四邊形BDEF周長(zhǎng)的最小值=BD+EF+AM,然后求得直線(xiàn)AM的解析式,從而可求得點(diǎn)F的坐標(biāo),最后依據(jù)EF=1可得到點(diǎn)E的坐標(biāo);

3)當(dāng)△PCQ∽△ACH時(shí),∠PCQ=ACH.過(guò)點(diǎn)ACA的垂線(xiàn)交PC與點(diǎn)F,作FNx軸與點(diǎn)N.則AFPQ,先證明△CPQ∽△CFA、FNA∽△AHC,依據(jù)相似三角形的性質(zhì)可求得AN=2,FN=1,則F-5,1),然后再求得直線(xiàn)CF的解析式,將CF的解析式與拋物線(xiàn)的解析式聯(lián)立組成方程組可求得點(diǎn)P的坐標(biāo).

試題解析:

1)解:∵拋物線(xiàn)y=ax2+bx+3過(guò)點(diǎn)A﹣3,0),B1,0),

,解得 ,

∴拋物線(xiàn)的解析式為y=﹣x2﹣2x+3

2)解:∵y=﹣x2﹣2x+3=﹣x+12+4,

∴頂點(diǎn)C﹣14).

D點(diǎn)向下平移1個(gè)單位,得到點(diǎn)M,連結(jié)AM交對(duì)稱(chēng)軸于F,作DEFM交對(duì)稱(chēng)軸于E點(diǎn),如圖1所示.

EFDM,DEFM,

∴四邊形EFMD是平行四邊形,

DE=FM,EF=DM=1,

DE+FB=FM+FA=AM

由勾股定理,得AM= = = ,

BD== = ,

四邊形BDEF周長(zhǎng)的最小值=BD+DE+EF+FB=BD+EF+DE+FB=BD+EF+AM= +1+ ;

設(shè)AM的解析式為y=mx+n,將A30),M0,2)代入,解得m=,n=2,則AM的解析式為y= x+2,

當(dāng)x=1時(shí),y=,即F1 ),

EF=1,得E1, ).

故四邊形BDEF的周長(zhǎng)最小時(shí),點(diǎn)E的坐標(biāo)為(﹣1, ),點(diǎn)F坐標(biāo)為(﹣1 ),四邊形BDEF周長(zhǎng)的最小值是 +1+

3)解:點(diǎn)P在對(duì)稱(chēng)軸左側(cè),當(dāng)△PCQ∽△ACH時(shí),∠PCQ=ACH

過(guò)點(diǎn)ACA的垂線(xiàn)交PC與點(diǎn)F,作FNx軸與點(diǎn)N.則AFPQ,

∴△CPQ∽△CFA,

= =2

∵∠CAF=90°,

∴∠NAF+CAH=90°NFA+NAF=90°,

∴∠BFA=CAH

又∵∠FNA=AHC=90°

∴△FNA∽△AHC,

== =,即 = =

AN=2,FN=1

F﹣51).

設(shè)直線(xiàn)CF的解析式為y=kx+b,將點(diǎn)C和點(diǎn)F的坐標(biāo)代入得: ,解得:k= ,b=

∴直線(xiàn)CF的解析式為y= x+

y= x+ y=x22x+3聯(lián)立得: ,

解得: (舍去).

P, ).

∴滿(mǎn)足條件的點(diǎn)P的坐標(biāo)為, ).

點(diǎn)睛: 本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求一次函數(shù)、二次函數(shù)的解析式、相似三角形的性質(zhì)和判定、軸對(duì)稱(chēng)的性質(zhì),找出四邊形BDEF周長(zhǎng)取得最小值的條件是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形OABC的一個(gè)頂點(diǎn)B的坐標(biāo)是(4,2),反比例函數(shù)y=x0)的圖象經(jīng)過(guò)矩形的對(duì)稱(chēng)中點(diǎn)E,且與邊BC交于點(diǎn)D,若過(guò)點(diǎn)D的直線(xiàn)y=mx+n將矩形OABC的面積分成35的兩部分,則此直線(xiàn)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線(xiàn)段DE上,過(guò)點(diǎn)PPQBDBE于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD的面積為y,則能表示yx函數(shù)關(guān)系的圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AC為直徑的⊙OAB邊交于點(diǎn)D,過(guò)點(diǎn)D的切線(xiàn)交BC于點(diǎn)E.

(1)求證:DE=BC;

(2)若四邊形ODEC是正方形,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一邊長(zhǎng)為36cm的正方形硬紙板進(jìn)行適當(dāng)?shù)募舨,折成一個(gè)長(zhǎng)方體盒子(紙板的厚度忽略不計(jì))

(1)如圖,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方體盒子.

①要使折成的長(zhǎng)方體盒子的底面積為676cm2,那么剪掉的正方形的邊長(zhǎng)為多少?

②折成的長(zhǎng)方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.

(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個(gè)有蓋的長(zhǎng)方體盒子,若折成的一個(gè)長(zhǎng)方體盒子的表面積為880cm2,求此時(shí)長(zhǎng)方體盒子的長(zhǎng)、寬、高(只需求出符合要求的一種情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】7張如圖1的長(zhǎng)為,寬為b的小長(zhǎng)方形紙片,按如圖23的方式不重疊地放在 矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.

1)如圖2,點(diǎn)E、Q、P在同一直線(xiàn)上,點(diǎn)F、Q、G在同一直線(xiàn)上,右下角與左上角的陰影部分的面積的差為____________(用含、的代數(shù)式表示),矩形ABCD的面積為____________(用含、的代數(shù)式表示);

2)如圖3,點(diǎn)F、H、QG在同一直線(xiàn)上,設(shè)右下角與左上角的陰影部分的面積的差為S,.

①用、的代數(shù)式表示AE;

②當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,那么、必須滿(mǎn)足什么條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,AP,BP分別平分∠DAB和∠CBA,交于DC邊上點(diǎn)P,AD5

1)求線(xiàn)段AB的長(zhǎng).

2)若BP6,求△ABP的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)BD上,BE=DF,

(1)求證:AE=CF;

(2)若AB=3,AOD=120°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量出樓房AC的高度,從距離樓底C60米的點(diǎn)D(點(diǎn)D與樓底C在同一水平上)出發(fā),沿斜面坡度為i=l 的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得樓頂A的仰角為53,求樓房AC的高度(參考數(shù)據(jù):sin53=, cos53=, tan53=, ≈1.732,結(jié)果精確到0.1米)

查看答案和解析>>

同步練習(xí)冊(cè)答案