6.如圖,平面直角坐標系中,每個小正方形邊長都是1.
(1)按要求作圖:①△ABC關(guān)于原點O逆時針旋轉(zhuǎn)90°得到△A1B1C1;②△A1B1C1關(guān)于原點中心對稱的△A2B2C2
(2)寫出A2、B2C2坐標,并求△A2B2C2的周長.

分析 (1)①利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對應(yīng)點A1、B1、C1的坐標,然后描點即可得到△A1B1C1;
②利用關(guān)于原點對稱的點的坐標特征寫出點A2、B2、C2,然后描點即可得到△A2B2C2;
(2)先利用勾股定理分別計算出B2C2、A2C2、,A2B2,然后計算△A2B2C2的周長.

解答 解:(1)①如圖,△A1B1C1為所作;
②如圖,△A2B2C2為所作;

(2)A2、B2、C2的坐標分別為(3,1),(1,6),(1,3)
B2C2=3,A2C2=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,A2B2=$\sqrt{{2}^{2}+{5}^{2}}$=$\sqrt{29}$,
所以△A2B2C2的周長=3+2$\sqrt{2}$+$\sqrt{29}$.

點評 本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應(yīng)角都相等都等于旋轉(zhuǎn)角,對應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應(yīng)點,順次連接得出旋轉(zhuǎn)后的圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標系中,O為坐標原點.
(1)已知點A(3,1),連結(jié)OA,作如下探究:
探究一:平移線段OA,使點O落在點B.設(shè)點A落在點C,若點B的坐標為(1,2),請在圖1中作出BC,點C的坐標是(4,3);
探究二:將線段OA繞點O逆時針旋轉(zhuǎn)90°,點A落在點D.則點D的坐標是(-1,3).
(2)已知四點O(0,0),A (a,b),C,B(c,d),順次連結(jié)O,A,C,B.若所得到的四邊形是正方形,請直接寫出a,b,c,d應(yīng)滿足的關(guān)系式是a=d,b=-c或b=c,a=-d.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在△ABC中,DE∥BC,若$\frac{AD}{AB}$=$\frac{3}{4}$,DE=9,則BC的長為12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計算
(1)$\sqrt{25}$-$\root{3}{-8}$+|-$\sqrt{2}$|;             
(2)2a•3a2+(-2a)3
(3)(-2x)•(3x2-$\frac{1}{2}$x+2);          
(4)(8a3-12a2b2)÷(2a)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.先化簡,再求值:(2x2-3xy+4)-2(3xy-x2+2),其中x=2  y=$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,△ABC中,AB=BC,DE⊥AB于點E,DF⊥BC于點D,交AC于F.
(1)若∠AFD=155°,求∠EDF的度數(shù);
(2)若點F是AC的中點,猜想∠CFD與∠B的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.已知a,b,c為△ABC的三條邊,若a2+b2+c2=ab+ac+bc,則該△ABC是什么三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知∠AOB=90°,OC是從∠AOB的頂點O引出的一條射線,若∠AOB=2∠BOC,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,AB為⊙O的直徑,弦AD平分∠CAB,過點D作DE⊥AC,垂足為點E,ED的延長線交AB的延長線于點F.
(1)判斷EF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若ED=2,AE=4,求⊙O 的半徑及AF的長.

查看答案和解析>>

同步練習(xí)冊答案