【題目】某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬元) | 1 | 2 | 4 | 5 |
銷售額y(萬元) | 6 | 14 | 28 | 32 |
根據(jù)上表中的數(shù)據(jù)可以求得線性回歸方程 = x+ 中的 為6.6,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為10萬元時銷售額為( )
A.66.2萬元
B.66.4萬元
C.66.8萬元
D.67.6萬元
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極大值,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過兩點(diǎn),且圓心在直線l:上.
Ⅰ求圓的方程;
Ⅱ求過點(diǎn)且與圓相切的直線方程;
Ⅲ設(shè)圓與x軸相交于A、B兩點(diǎn),點(diǎn)P為圓上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn)當(dāng)點(diǎn)P變化時,以MN為直徑的圓是否經(jīng)過圓內(nèi)一定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南航集團(tuán)與波音公司2018年2月在廣州簽署協(xié)議,雙方合作的客改貨項(xiàng)目落戶廣州空港經(jīng)濟(jì)區(qū).根據(jù)協(xié)議,雙方將在維修技術(shù)轉(zhuǎn)讓、支持項(xiàng)目、管理培訓(xùn)等方面開展戰(zhàn)略合作.現(xiàn)組織者對招募的100名服務(wù)志愿者培訓(xùn)后,組織一次知識競賽,將所得成績制成如下頻率分布直方圖(假定每個分?jǐn)?shù)段內(nèi)的成績均勻分布),組織者計(jì)劃對成績前20名的參賽者進(jìn)行獎勵.
(1)試求受獎勵的分?jǐn)?shù)線;
(2)從受獎勵的20人中利用分層抽樣抽取5人,再從抽取的5人中抽取2人在主會場服務(wù),試求2人成績都在90分以上(含90分)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面ABCD是矩形,平面ABCD,,E,F(xiàn)是線段BC,AB的中點(diǎn).
Ⅰ證明:;
Ⅱ在線段PA上確定點(diǎn)G,使得平面PED,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD中.∠BAD=120°,AB=1,AD=2,點(diǎn)P是線段BC上的一個動點(diǎn),則 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形所在的平面垂直于平面,,,.
(1)若是的中點(diǎn),求證:平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求的值;
(2)當(dāng)時,在區(qū)間上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com