7.為使方程的取值范圍是 查看更多

 

題目列表(包括答案和解析)

為使方程 在(0, ]內(nèi)有解,則a的取值范圍是  (     )

A.         B.       C.         D.   

 

查看答案和解析>>

為使方程 在(0, ]內(nèi)有解,則a的取值范圍是 (    )
A.B.C.D.

查看答案和解析>>

已知拋物線C的方程為,焦點(diǎn)為F,有一定點(diǎn),A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點(diǎn).
(1)當(dāng)|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O(shè)、F為焦點(diǎn),且過點(diǎn)A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點(diǎn)A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點(diǎn)M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.

查看答案和解析>>

已知拋物線C的方程為,焦點(diǎn)為F,有一定點(diǎn),A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點(diǎn).

(1)當(dāng)|AP|+|PF|取最小值時,求

 

(2)如果一橢圓E以O(shè)、F為焦點(diǎn),且過點(diǎn)A,求橢圓E的方程及右準(zhǔn)線方程;

(3)設(shè)是過點(diǎn)A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個

不同的點(diǎn)M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請

說明理由.

 

查看答案和解析>>

已知拋物線C的方程為,焦點(diǎn)為F,有一定點(diǎn),A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點(diǎn).
(1)當(dāng)|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O(shè)、F為焦點(diǎn),且過點(diǎn)A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點(diǎn)A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點(diǎn)M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.

查看答案和解析>>

一、選擇題

1.D   2.A   3.A   4.C    5.D   6.D   7.B   8.A

二、填空題

9.    10.    11.40;    12.7    13.3    14.①②③④

三、解答題

15.解:(1)設(shè)數(shù)列

由題意得:

解得:

   (2)依題

為首項為2,公比為4的等比數(shù)列

   (2)由

 

16.解:(1)

   (2)由

17.解法1:

設(shè)輪船的速度為x千米/小時(x>0),

則航行1公里的時間為小時。

依題意,設(shè)與速度有關(guān)的每小時燃料費(fèi)用為,

答:輪船的速度應(yīng)定為每小時20公里,行駛1公里所需的費(fèi)用總和最小。

解法2:

設(shè)輪船的速度為x千米/小時(x>0),

則航行1公里的時間為小時,

依題意,設(shè)與速度有關(guān)的每小時燃料費(fèi)用為

元,

且當(dāng)時等號成立。

答:輪船的速度應(yīng)定為每小時20公里,行駛1公里所需的費(fèi)用總和最小。

 

18.解:(1),半徑為1依題設(shè)直線,

    由圓C與l相切得:

   (2)設(shè)線段AB中點(diǎn)為

    代入即為所求的軌跡方程。

   (3)

   

 

  • <table id="womc2"><wbr id="womc2"></wbr></table>
  • <rt id="womc2"><wbr id="womc2"></wbr></rt>

       

        ∴異面直線CD與AP所成的角為60°

       (2)連結(jié)AC交BD于G,連結(jié)EG,

       

       (3)設(shè)平面,由

       

    20.解:(1)設(shè)函數(shù)、,

        不妨設(shè)

       

       (2)時,


    同步練習(xí)冊答案