題目列表(包括答案和解析)
如圖,在△ABC中,已知AB=AC,∠BAC=90o,BC=6cm,,直線CM⊥BC,動點D從點C開始沿射線CB方向以每秒2厘米的速度運動,動點E也同時從點C開始在直線CM上以每秒1厘米的速度運動,連結(jié)AD、AE,設(shè)運動時間為t秒.
1.(1)求AB的長;
2.(2)當t為多少時,△ABD的面積為6?
3.(3)當t為多少時,△ABD≌△ACE,并簡要說明理由(可在備用圖中畫出具體圖形).
如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.
小萍同學(xué)靈活運用軸對稱知識,將圖形進行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.
(1)請你幫小萍求出x的值.
(2) 參考小萍的思路,探究并解答新問題:
如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))
如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.
小萍同學(xué)靈活運用軸對稱知識,將圖形進行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.
(1)請你幫小萍求出x的值.
(2) 參考小萍的思路,探究并解答新問題:
如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com