上.過作交的延長(zhǎng)線于點(diǎn).那 查看更多

 

題目列表(包括答案和解析)

數(shù)學(xué)課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC的中點(diǎn).,且DE交△ABC外角的平分線CE于點(diǎn)E,求證:AD=DE.
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖2,如果把“點(diǎn)D是邊BC的中點(diǎn)”改為“點(diǎn)D是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AD=DE”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(2)小亮提出:如圖3,點(diǎn)D是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AD=DE”仍然成立.你認(rèn)為小華的觀點(diǎn)          (填“正確”或“不正確”).

查看答案和解析>>

數(shù)學(xué)課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC的中點(diǎn).,且DE交△ABC外角的平分線CE于點(diǎn)E,求證:AD=DE.

經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖2,如果把“點(diǎn)D是邊BC的中點(diǎn)”改為“點(diǎn)D是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AD=DE”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;

(2)小亮提出:如圖3,點(diǎn)D是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AD=DE”仍然成立.你認(rèn)為小華的觀點(diǎn)          (填“正確”或“不正確”).

 

查看答案和解析>>

數(shù)學(xué)課上,張老師給出了問題:如圖(1),四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角∠DCG的平分線CF 于點(diǎn)F,求證:AE=EF。
經(jīng)過思考,小明展示了一種正確的解題思路:取AB 的中點(diǎn)M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步探究:
(1)小穎提出:如圖(2),如果把“點(diǎn)E是邊BC的中點(diǎn)” 改為“點(diǎn)E是邊BC上(除B、C外)的任意一點(diǎn)”,其他條件不變,那么結(jié)論“AE= EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(2)小華提出:如圖(3),點(diǎn)E是BC的延長(zhǎng)線上(除C 點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF” 仍然成立,你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由。

查看答案和解析>>

數(shù)學(xué)課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC的中點(diǎn).,且DE交△ABC外角的平分線CE于點(diǎn)E,求證:AD=DE.
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖2,如果把“點(diǎn)D是邊BC的中點(diǎn)”改為“點(diǎn)D是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AD=DE”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(2)小亮提出:如圖3,點(diǎn)D是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AD=DE”仍然成立.你認(rèn)為小華的觀點(diǎn)          (填“正確”或“不正確”).

查看答案和解析>>

數(shù)學(xué)課上,張老師出示了問題:如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角∠DCG的平行線CF于點(diǎn)F,求證:AE=EF

經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連結(jié)ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.

在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;

(2)小華提出:如圖,點(diǎn)E是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案