題目列表(包括答案和解析)
t | ||
|
A、當α在一、二象限取正,在三、四象限取負 |
B、當α在一、四象限取正,在二、三象限取負 |
C、在α在一、三象限取正,在二、四象限取負 |
D、當α僅在第一象取取正 |
已知函數 R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調遞增,又
① 當,即時,在上恒成立,
所以在單調遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
sin(π-α)cos(2π-α)tan(
| ||
sin(-π-α)cot(-π-α) |
31 |
3 |
3π |
2 |
1 |
5 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com