設(shè)是曲線段OC上的任意一點(diǎn).則在矩 形PQBN中. 查看更多

 

題目列表(包括答案和解析)

已知A,B,C,D四點(diǎn)的坐標(biāo)分別為A(-1,0),B(1,0),C(0,1),D(2,0),P是線段CD上的任意一點(diǎn),則
AP
BP
的最小值是
-
1
5
-
1
5

查看答案和解析>>

已知
OA
=(1,7),
OB
=(3,1),D為線段AB的中點(diǎn),設(shè)M為線段OD上的任意一點(diǎn),(O為坐標(biāo)原點(diǎn)),求
MA
MB
的取值范圍.

查看答案和解析>>

已知A,B,C,D四點(diǎn)的坐標(biāo)分別為A(-1,0),B(1,0),C(0,1),D(2,0),P是線段CD上的任意一點(diǎn),則
AP
BP
的最小值是______.

查看答案和解析>>

已知A,B,C,D四點(diǎn)的坐標(biāo)分別為A(-1,0),B(1,0),C(0,1),D(2,0),P是線段CD上的任意一點(diǎn),則的最小值是   

查看答案和解析>>

已知=(1,7),=(3,1),D為線段AB的中點(diǎn),設(shè)M為線段OD上的任意一點(diǎn),(O為坐標(biāo)原點(diǎn)),求的取值范圍.

查看答案和解析>>

 

1.(1)因?yàn)?sub>,所以

      又是圓O的直徑,所以

      又因?yàn)?sub>(弦切角等于同弧所對圓周角)

      所以所以

      又因?yàn)?sub>,所以相似

      所以,即

  (2)因?yàn)?sub>,所以

       因?yàn)?sub>,所以

       由(1)知:。所以

       所以,即圓的直徑

       又因?yàn)?sub>,即

     解得

2.依題設(shè)有:

 令,則

 

 

3.將極坐標(biāo)系內(nèi)的問題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問題

  點(diǎn)的直角坐標(biāo)分別為

  故是以為斜邊的等腰直角三角形,

  進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為

      ,即

  將代入上述方程,得

  ,即

4.假設(shè),因?yàn)?sub>,所以。

又由,則,

所以,這與題設(shè)矛盾

又若,這與矛盾

綜上可知,必有成立

同理可證也成立

命題成立

5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.

1°.當(dāng)n=1時,命題顯然成立;

2°.假設(shè)當(dāng)n=k(kN*)時,命題成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

則n=k+1時,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命題對n=k+1.成立

由1°, 2°,命題對任意的正整數(shù)n成立.

6.(1)因?yàn)?sub>,,

      ,所以

       故事件A與B不獨(dú)立。

   (2)因?yàn)?sub>

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案