題目列表(包括答案和解析)
如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求證:PD⊥BC;
(II)求二面角B—PD—C的正切值。
【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二問中解:取PD的中點(diǎn)E,連接CE、BE,
為正三角形,
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,
∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進(jìn)而求解。
月份X | 1 | 2 | 3 | 4 |
用水量 | 4.5 | 4 | 3 | 2.5 |
∧ |
y |
(1), 則 (4分)
(2)由(1)知,則
①當(dāng)時(shí),,令或
,
在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image014.png"> (7分)
② 當(dāng)時(shí), a.若,則
b.若,則在上是單調(diào)減的
在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image022.png">
c.若則在上是單調(diào)增的
在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image025.png"> (9分)
綜上所述,當(dāng)時(shí),在的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image014.png">
當(dāng)時(shí),在的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image027.png"> (10分)
當(dāng)時(shí),若時(shí),在的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image014.png">
若時(shí),在的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image025.png"> (12分)
即 當(dāng)時(shí),在的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image027.png">
當(dāng)時(shí),在的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image014.png">
當(dāng)時(shí),在的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522260769404934/SYS201205252227515829282837_ST.files/image025.png">
某廠1—4月用水量(單位:百噸)的數(shù)據(jù)如下表:
月份X |
1 |
2 |
3 |
4 |
用水量 |
4.5 |
4 |
3 |
2.5 |
由散點(diǎn)圖知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是
,則b= .
1.(1)因?yàn)?sub>,所以
又是圓O的直徑,所以
又因?yàn)?sub>(弦切角等于同弧所對圓周角)
所以所以
又因?yàn)?sub>,所以相似
所以,即
(2)因?yàn)?sub>,所以,
因?yàn)?sub>,所以
由(1)知:。所以
所以,即圓的直徑
又因?yàn)?sub>,即
解得
2.依題設(shè)有:
令,則
3.將極坐標(biāo)系內(nèi)的問題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問題
點(diǎn)的直角坐標(biāo)分別為
故是以為斜邊的等腰直角三角形,
進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為
,即
將代入上述方程,得
,即
4.假設(shè),因?yàn)?sub>,所以。
又由,則,
所以,這與題設(shè)矛盾
又若,這與矛盾
綜上可知,必有成立
同理可證也成立
命題成立
5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.
1°.當(dāng)n=1時(shí),命題顯然成立;
2°.假設(shè)當(dāng)n=k(kN*)時(shí),命題成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),
則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=( k+1)(k+1+1)(k+1+2)(k+1+3)
即命題對n=k+1.成立
由1°, 2°,命題對任意的正整數(shù)n成立.
6.(1)因?yàn)?sub>,,
,所以
故事件A與B不獨(dú)立。
(2)因?yàn)?sub>
所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com