(1)求函數(shù)的表達(dá)式,求數(shù)列的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,
Sn
n
)(n∈N*)均在函數(shù)y=-x+12的圖象上.
(1)寫出Sn關(guān)于n的函數(shù)表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)計(jì)算T16=|a1|+|a2|+|a3|+…+|a16|;
(4)已知bn=
an-13
2
,若對一切n∈N*均有Sn-3<m•bn成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

奇函數(shù)f(x)=
ax2+bx+1
cx+d
 (x≠0,a>1)
,且當(dāng)x>0時(shí),f(x)有最小值2
2
,又f(1)=3.
(1)求f(x)的表達(dá)式;
(2)設(shè)g(x)=xf(x),正數(shù)數(shù)列{an}中,a1=1,an+12=g(an),求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)h(x)=
1
2
f(x)-
3
2x
,數(shù)列{bn}中b1=m(m>0),bn+1=h(bn)(n∈N*).是否存在常數(shù)m使bn•bn+1>0對任意n∈N*恒成立.若存在,求m的取值范圍,若不存在,說明理由.

查看答案和解析>>

將函數(shù)f(x)=sin
x
2
cos
x
2
+2013
在區(qū)間(0,+∞)內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列{an}(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2nan,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn的表達(dá)式.

查看答案和解析>>

設(shè)函數(shù)f(x)=數(shù)學(xué)公式(a∈N*),又存在非零自然數(shù)m,使得f(m)=m,f(-m)<-數(shù)學(xué)公式成立.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè){an}是各項(xiàng)非零的數(shù)列,若數(shù)學(xué)公式對任意n∈N*成立,求數(shù)列{an}的一個(gè)通項(xiàng)公式;
(3)在(2)的條件下,數(shù)列{an}是否惟一確定?請給出判斷,并予以證明.

查看答案和解析>>

設(shè)函數(shù)f(x)=
x2
ax-2
(a∈N*),又存在非零自然數(shù)m,使得f(m)=m,f(-m)<-
1
m
成立.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè){an}是各項(xiàng)非零的數(shù)列,若f(
1
an
)=
1
4(a1+a2+…+an)
對任意n∈N*成立,求數(shù)列{an}的一個(gè)通項(xiàng)公式;
(3)在(2)的條件下,數(shù)列{an}是否惟一確定?請給出判斷,并予以證明.

查看答案和解析>>

一、填空題:本大題共14小題,每小題5分,共70分.

1.   2.   3.   4.   5.1   6.  7.  8. 9.16   10.8   11.  12.   13.  14. ①③

二、解答題:本大題共6小題,共90分.

15.(1)設(shè)集合中的點(diǎn)為事件,  區(qū)域的面積為36,  區(qū)域的面積為18

(2)設(shè)點(diǎn)在集合為事件,  甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù)為36個(gè),其中在集合中的點(diǎn)有21個(gè),故

16.(1)由4sinB ? sin2+ cos2B = 1 +得:

,          

(2)法1:為銳角          

由已知得:, 角為銳角      可得:

由正弦定理得:

法2:由得:,  由余弦定理知:

即:          

17.(1)證明:連接,取中點(diǎn),連接

在等腰梯形中,,AB=AD,,E是BC的中點(diǎn)

都是等邊三角形   

平面    平面

平面   

(2)證明:連接于點(diǎn),連接

,且    四邊形是平行四邊形   是線段的中點(diǎn)

是線段的中點(diǎn)     

平面   平面

(3)與平面不垂直.

證明:假設(shè)平面,  則

平面  

,平面    平面   

,這與矛盾

與平面不垂直.

18.(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為

依題意得:,得   ∴  所以,橢圓的標(biāo)準(zhǔn)方程為

(2)設(shè)過點(diǎn)的直線方程為:,代入橢圓方程得;

  (*)

依題意得:,即 

得:,且方程的根為  

當(dāng)點(diǎn)位于軸上方時(shí),過點(diǎn)垂直的直線與軸交于點(diǎn),

直線的方程是:,  

所求圓即為以線段DE為直徑的圓,故方程為:

同理可得:當(dāng)點(diǎn)位于軸下方時(shí),圓的方程為:

(3)設(shè),=得:,代入

(**)    要證=,即證

由方程組(**)可知方程組(1)成立,(2)顯然成立.∴=

19..解(1)的解集有且只有一個(gè)元素,

當(dāng)a=4時(shí),函數(shù)上遞減

故存在,使得不等式成立

當(dāng)a=0時(shí),函數(shù)上遞增

故不存在,使得不等式成立

綜上,得a=4,…………………………5分

(2)由(1)可知

當(dāng)n=1時(shí),

當(dāng)時(shí),

(3),

+

               =+>

               >    

20解:(1)由的定義可知,(對所有實(shí)數(shù))等價(jià)于

(對所有實(shí)數(shù))這又等價(jià)于,即

對所有實(shí)數(shù)均成立.        (*)

  由于的最大值為,

  故(*)等價(jià)于,即,這就是所求的充分必要條件

(2)分兩種情形討論

     (i)當(dāng)時(shí),由(1)知(對所有實(shí)數(shù)

則由易知,

再由的單調(diào)性可知,

函數(shù)在區(qū)間上的單調(diào)增區(qū)間的長度

(參見示意圖1)

(ii)時(shí),不妨設(shè),則,于是

   當(dāng)時(shí),有,從而

當(dāng)時(shí),有

從而  ;

當(dāng)時(shí),,及,由方程

      解得圖象交點(diǎn)的橫坐標(biāo)為

                          ⑴

 

顯然

這表明之間。由⑴易知

 

綜上可知,在區(qū)間上,   (參見示意圖2)

故由函數(shù)的單調(diào)性可知,在區(qū)間上的單調(diào)增區(qū)間的長度之和為,由于,即,得

          ⑵

故由⑴、⑵得 

綜合(i)(ii)可知,在區(qū)間上的單調(diào)增區(qū)間的長度和為。

 

 

 

 

                                    

 


同步練習(xí)冊答案