A.點(diǎn)A B.點(diǎn)BC.點(diǎn)C D.點(diǎn)D [答案]B 查看更多

 

題目列表(包括答案和解析)

如果一個(gè)點(diǎn)能與另外兩個(gè)點(diǎn)能構(gòu)成直角三角形,則稱這個(gè)點(diǎn)為另外兩個(gè)點(diǎn)的勾股點(diǎn).例如:矩形ABCD中,點(diǎn)C與A,B兩點(diǎn)可構(gòu)成直角三角形ABC,則稱點(diǎn)C為A,B兩點(diǎn)的勾股點(diǎn).同樣,點(diǎn)D也是A,B兩點(diǎn)的勾股點(diǎn).

(1)如圖1,矩形ABCD中,AB=2,BC=1,請?jiān)谶匔D上作出A,B兩點(diǎn)的勾股點(diǎn)(點(diǎn)C和點(diǎn)D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2 矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A, B兩點(diǎn)的勾股點(diǎn)的個(gè)數(shù)

(3 如圖2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.過點(diǎn)P作直線l平行于BC,點(diǎn)H為M,N兩點(diǎn)的勾股點(diǎn),且點(diǎn)H在直線l上.求PH的長.

【解析】(1)以線段AB為直徑的圓與線段CD的交點(diǎn),或線段CD的中點(diǎn);

(2)利用(1)中圖形得出C,D,E,F(xiàn)即可得出答案;

(3)求出MN的長度,根據(jù)勾股數(shù)的特點(diǎn)得出符合要求的點(diǎn)

 

查看答案和解析>>

如果一個(gè)點(diǎn)能與另外兩個(gè)點(diǎn)能構(gòu)成直角三角形,則稱這個(gè)點(diǎn)為另外兩個(gè)點(diǎn)的勾股點(diǎn).例如:矩形ABCD中,點(diǎn)C與A,B兩點(diǎn)可構(gòu)成直角三角形ABC,則稱點(diǎn)C為A,B兩點(diǎn)的勾股點(diǎn).同樣,點(diǎn)D也是A,B兩點(diǎn)的勾股點(diǎn).

(1)如圖1,矩形ABCD中,AB=2,BC=1,請?jiān)谶匔D上作出A,B兩點(diǎn)的勾股點(diǎn)(點(diǎn)C和點(diǎn)D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2 矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A, B兩點(diǎn)的勾股點(diǎn)的個(gè)數(shù)

(3 如圖2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.過點(diǎn)P作直線l平行于BC,點(diǎn)H為M,N兩點(diǎn)的勾股點(diǎn),且點(diǎn)H在直線l上.求PH的長.

【解析】(1)以線段AB為直徑的圓與線段CD的交點(diǎn),或線段CD的中點(diǎn);

(2)利用(1)中圖形得出C,D,E,F(xiàn)即可得出答案;

(3)求出MN的長度,根據(jù)勾股數(shù)的特點(diǎn)得出符合要求的點(diǎn)

 

查看答案和解析>>

(本題滿分12分)
【小題1】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面請你完成余下的證明過程)

【小題2】(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請說明理由.

【小題3】(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=        °時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

(本題滿分12分)
【小題1】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面請你完成余下的證明過程)

【小題2】(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請說明理由.

【小題3】(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=        °時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

如圖,拋物線y=ax2+bx+c的頂點(diǎn)為P,對稱軸直線x=1與x軸交于點(diǎn)D,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-1,0)、C(0,3).
【小題1】求此拋物線的解析式
【小題2】點(diǎn)E在線段BC上,若△DEB為等腰三角形,求點(diǎn)E的坐標(biāo)
【小題3】點(diǎn)F、Q都在該拋物線上,若點(diǎn)C與點(diǎn)F關(guān)于直線x=1成軸對稱,連結(jié)BF、BQ,如果∠FBQ=45°,求點(diǎn)Q的坐標(biāo);
【小題4】將△BOC繞著它的頂點(diǎn)B順時(shí)針在第一象限內(nèi)旋轉(zhuǎn),旋轉(zhuǎn)后的圖形為△BO'C',BO'與BP重合時(shí),則△BO'C'不在BP上的頂點(diǎn)C'的坐標(biāo)為   ▲   (直接寫出答案).

查看答案和解析>>


同步練習(xí)冊答案